gpt4 book ai didi

python - CNN 训练精度在训练期间变得更好,但测试精度保持在 40% 左右

转载 作者:太空宇宙 更新时间:2023-11-03 14:01:37 26 4
gpt4 key购买 nike

所以在过去的几个月里,我一直在使用 Tensorflow 和 Keras 学习很多关于神经网络的知识,所以我想尝试为 CIFAR10 数据集(代码如下)制作一个模型。

然而,在训练过程中,准确率变得更好(从 1 个 epoch 后的约 35% 到 5 个 epoch 后的约 60-65%),但 val_acc 保持不变或仅增加一点点。以下是打印结果:

Epoch 1/5
50000/50000 [==============================] - 454s 9ms/step - loss: 1.7761 - acc: 0.3584 - val_loss: 8.6776 - val_acc: 0.4489
Epoch 2/5
50000/50000 [==============================] - 452s 9ms/step - loss: 1.3670 - acc: 0.5131 - val_loss: 8.9749 - val_acc: 0.4365
Epoch 3/5
50000/50000 [==============================] - 451s 9ms/step - loss: 1.2089 - acc: 0.5721 - val_loss: 7.7254 - val_acc: 0.5118
Epoch 4/5
50000/50000 [==============================] - 452s 9ms/step - loss: 1.1140 - acc: 0.6080 - val_loss: 7.9587 - val_acc: 0.4997
Epoch 5/5
50000/50000 [==============================] - 452s 9ms/step - loss: 1.0306 - acc: 0.6385 - val_loss: 7.4351 - val_acc: 0.5321
10000/10000 [==============================] - 27s 3ms/step
loss: 7.435152648162842
accuracy: 0.5321

我在互联网上四处查看,我最好的猜测是我的模型过度拟合,所以我尝试删除一些层,添加更多的 dropout 层并减少过滤器的数量,但没有显示出任何增强。

最奇怪的是,前段时间我根据一些教程做了一个非常相似的模型,在 8 个 epoch 后最终准确率达到了 80%。 (虽然我丢失了那个文件)

这是我的模型的代码:

model = Sequential()
model.add(Conv2D(filters=256,
kernel_size=(3, 3),
activation='relu',
data_format='channels_last',
input_shape=(32, 32, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(filters=128,
kernel_size=(2, 2),
activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))


model.compile(optimizer=adam(),
loss=categorical_crossentropy,
metrics=['accuracy'])

model.fit(train_images, train_labels,
batch_size=1000,
epochs=5,
verbose=1,
validation_data=(test_images, test_labels))

loss, accuracy = model.evaluate(test_images, test_labels)
print('loss: ', loss, '\naccuracy: ', accuracy)

train_imagestest_imagesnumpy 数组,大小为 (50000,32,32,3)(10000,32,32,3)train_labelstest_labels 是大小为 (50000 ,10)(10000,10)

我的问题:是什么原因造成的,我该怎么办?

根据 Maxim 的回答进行编辑:

我把模型改成这样:

model = Sequential()
model.add(Conv2D(filters=64,
kernel_size=(3, 3),
activation='relu',
kernel_initializer='he_normal', # better for relu based networks
input_shape=(32, 32, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(filters=256,
kernel_size=(3, 3),
activation='relu',
kernel_initializer='he_normal'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(10, activation='softmax'))

现在输出是这样的:

Epoch 1/10
50000/50000 [==============================] - 326s 7ms/step - loss: 1.4916 - acc: 0.4809 - val_loss: 7.7175 - val_acc: 0.5134
Epoch 2/10
50000/50000 [==============================] - 338s 7ms/step - loss: 1.0622 - acc: 0.6265 - val_loss: 6.9945 - val_acc: 0.5588
Epoch 3/10
50000/50000 [==============================] - 326s 7ms/step - loss: 0.8957 - acc: 0.6892 - val_loss: 6.6270 - val_acc: 0.5833
Epoch 4/10
50000/50000 [==============================] - 324s 6ms/step - loss: 0.7813 - acc: 0.7271 - val_loss: 5.5790 - val_acc: 0.6474
Epoch 5/10
50000/50000 [==============================] - 327s 7ms/step - loss: 0.6690 - acc: 0.7668 - val_loss: 5.7479 - val_acc: 0.6358
Epoch 6/10
50000/50000 [==============================] - 320s 6ms/step - loss: 0.5671 - acc: 0.8031 - val_loss: 5.8720 - val_acc: 0.6302
Epoch 7/10
50000/50000 [==============================] - 328s 7ms/step - loss: 0.4865 - acc: 0.8319 - val_loss: 5.6320 - val_acc: 0.6451
Epoch 8/10
50000/50000 [==============================] - 320s 6ms/step - loss: 0.3995 - acc: 0.8611 - val_loss: 5.3879 - val_acc: 0.6615
Epoch 9/10
50000/50000 [==============================] - 320s 6ms/step - loss: 0.3337 - acc: 0.8837 - val_loss: 5.6874 - val_acc: 0.6432
Epoch 10/10
50000/50000 [==============================] - 320s 6ms/step - loss: 0.2806 - acc: 0.9033 - val_loss: 5.7424 - val_acc: 0.6399
10000/10000 [==============================] - 19s 2ms/step
loss: 5.74234927444458
accuracy: 0.6399

似乎我又过拟合了,尽管我在迄今为止获得的帮助下更改了模型...有任何解释或提示吗?

输入图像是 (32,32,3) numpy 数组,归一化为 (0,1)

最佳答案

您还没有包括如何准备数据,这是使该网络学习得更好的一项补充:

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

如果您像那样进行数据归一化,那么您的网络就没问题:它在 5 个 epoch 后达到 ~65-70% 的测试准确率,这是一个很好的结果。请注意,5 个 epoch 只是一个开始,需要大约 30-50 个 epoch 才能真正很好地学习数据并显示接近最先进的结果。

以下是我注意到的一些小改进,可以让您获得额外的性能点数:

  • 由于您使用的是基于 ReLu 的网络,he_normal 初始化器 is betterglorot_uniform(这是 Conv2D 中的默认设置)。
  • 随着网络的深入,减少过滤器的数量是很奇怪的。你应该反其道而行之。我更改了 256 -> 64128 -> 256 并提高了准确性。
  • 我稍微降低了 dropout 0.5 -> 0.4
  • 内核大小 3x32x2 更常见。我认为你也应该在第二个转换层上尝试一下。事实上,你可以玩all hyper-parameters找到最佳组合。

这是最终代码:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

model = Sequential()
model.add(Conv2D(filters=64,
kernel_size=(3, 3),
activation='relu',
kernel_initializer='he_normal',
input_shape=(32, 32, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(filters=256,
kernel_size=(2, 2),
kernel_initializer='he_normal',
activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(10, activation='softmax'))

model.compile(optimizer=adam(),
loss=categorical_crossentropy,
metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

model.fit(x_train, y_train,
batch_size=500,
epochs=5,
verbose=1,
validation_data=(x_test, y_test))

loss, accuracy = model.evaluate(x_test, y_test)
print('loss: ', loss, '\naccuracy: ', accuracy)

5个epoch后的结果:

loss:  0.822134458447 
accuracy: 0.7126

顺便说一句,您可能有兴趣将您的方法与 keras example CIFAR-10 conv net 进行比较.

关于python - CNN 训练精度在训练期间变得更好,但测试精度保持在 40% 左右,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48594888/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com