gpt4 book ai didi

python - 如何在迭代pandas期间将行移动到新的df中

转载 作者:太空宇宙 更新时间:2023-11-03 14:00:13 25 4
gpt4 key购买 nike

我有一个 100+ 百万行的 df。我需要识别与时间段相关的任何重叠行,并将这些重叠行放入新的 df (df2) 中,并将它们从初始 df 中删除。我的代码可以正常工作,并根据 @PeterLeimbigler 的有用建议正确提供了最后两个 dfs。然而,这是一种获取答案的资源密集型方法,因为每次迭代都需要再次遍历整个 df。 177K 行大约需要 11 分 20 秒(这会有所不同,因为迭代的长度不同)。

df =  pd.DataFrame({'Key': ['10003', '10003', '10003', '10003', '10003','10003','10034', '10034'], 
'Num1': [12,13,13,12,13,13,16,13],
'Num2': [121,122,122,124,125,126,127,128],
'admit': [20120506, 20120508, 20120510,20121010,20121010,20121110,20120516,20120520],
'discharge': [20120515, 20120508, 20120512,20121016,20121023,20121111,20120520,20120522]})
df['admit'] = pd.to_datetime(df['admit'], format='%Y%m%d')
df['discharge'] = pd.to_datetime(df['discharge'], format='%Y%m%d')

初始 df:

    Key     Num1    Num2    admit       discharge
0 10003 12 121 2012-05-06 2012-05-15
1 10003 13 122 2012-05-08 2012-05-08
2 10003 13 122 2012-05-10 2012-05-12
3 10003 12 124 2012-10-10 2012-10-16
4 10003 13 125 2012-10-10 2012-10-23
5 10003 13 126 2012-11-10 2012-11-11
6 10034 16 127 2012-05-16 2012-05-20
7 10034 13 128 2012-05-20 2012-05-22

这个 df 代表最终将被移动的列:

    Key     Num1    Num2    admit       discharge   flag
0 10003 12 121 2012-05-06 2012-05-15 move
1 10003 13 122 2012-05-08 2012-05-08 move
2 10003 13 122 2012-05-10 2012-05-12 move
3 10003 12 124 2012-10-10 2012-10-16 move
4 10003 13 125 2012-10-10 2012-10-23 move
5 10003 13 126 2012-11-10 2012-11-11
6 10034 16 127 2012-05-16 2012-05-20
7 10034 13 128 2012-05-20 2012-05-22

脚本:

#create new df
df2 = pd.DataFrame()

# Step 1: first find all 'Initial_overlap' rows,
df.loc[df.groupby(['Key']).apply(lambda x : (x['admit']<=x['admit'].shift(-1))&(x['discharge'] > x['admit'].shift(-1))).values,'flag']='Initial_Overlap'

#Step 2: then find first set of overlaps, then move those overlaps to df2, then drop from df1, iterate to the max number of rows with a group (since it could be the case that all rows are overlaps)
for item in range(df.groupby('Key')['Key'].count().max()):
df.loc[df.groupby(['Key']).apply(lambda x : (x['admit']>=x['admit'].shift(1))&(x['admit'] < x['discharge'].shift(1))).values,'flag']='Overlap'
moved_rows = df.loc[df['flag']=='Overlap',:]
df2 = df2.append(moved_rows)
df.drop(moved_rows.index, inplace=True)

#Step 3: after all iterations to find overlaps, then the INITIAL overlaps are moved to df2 and dropped from df1
moved_initial = df.loc[df['flag']=='Initial_Overlap',:]
df2 = df2.append(moved_initial)
df.drop(moved_initial.index, inplace=True)

在删除已识别的第一个重叠之后,循环再次重新分析所有行,但我认为有一种资源密集度较低的方法来识别这些行。有没有办法在迭代中移动/删除行,以便代码不必多次过滤数据帧(就像我的原始代码那样)?

最终两个预期结果:

df1
Key Num1 Num2 admit discharge flag
5 10003 13 126 2012-11-10 2012-11-11 0
6 10034 16 127 2012-05-16 2012-05-20 0
7 10034 13 128 2012-05-20 2012-05-22 0

df2
Key Num1 Num2 admit discharge flag
0 10003 12 121 2012-05-06 2012-05-15 Initial_overlap
1 10003 13 122 2012-05-08 2012-05-08 Overlap
2 10003 13 122 2012-05-10 2012-05-12 Overlap
3 10003 12 124 2012-10-10 2012-10-16 Initial_overlap
4 10003 13 125 2012-10-10 2012-10-23 Overlap

编辑:更新了 DF

df =  pd.DataFrame({'Key': ['10003', '10003', '10003', '10003', '10003','10003','10003', '10003','2003'], 
'Num1': [12,13,13,12,13,13,16,13,4],
'Num2': [121,122,122,124,125,126,127,128,128],
'admit': [20150119, 20150124, 20150206,20150211,20150220,20150304,20150407,20150422,20150407],
'discharge': [20150123, 20150202, 20150211,20150220,20150304,20150422,20120410,20120523,20150410]})
df['admit'] = pd.to_datetime(df['admit'], format='%Y%m%d')
df['discharge'] = pd.to_datetime(df['discharge'], format='%Y%m%d')

预期结果:

    Key    Num1 Num2    admit   discharge   flag
0 10003 12 121 2015-01-19 2015-01-23 NaN
1 10003 13 122 2015-01-24 2015-02-02 NaN
2 10003 13 122 2015-02-06 2015-02-11 NaN
3 10003 12 124 2015-02-11 2015-02-20 NaN
4 10003 13 125 2015-02-20 2015-03-04 NaN
5 10003 13 126 2015-03-04 2015-04-22 Move
6 10003 16 127 2015-04-07 2012-04-10 Move
7 10003 13 128 2015-04-22 2012-05-23 NaN
8 2003 4 128 2015-04-07 2015-04-10 NaN

最佳答案

让我们看看这是否有效:

您的设置:

df =  pd.DataFrame({'Key': ['10003', '10003', '10003', '10003', '10003','10003','10034', '10034'], 
'Num1': [12,13,13,12,13,13,16,13],
'Num2': [121,122,122,124,125,126,127,128],
'admit': [20120506, 20120508, 20120510,20121010,20121010,20121110,20120516,20120520],
'discharge': [20120515, 20120508, 20120512,20121016,20121023,20121111,20120520,20120522]})
df['admit'] = pd.to_datetime(df['admit'], format='%Y%m%d')
df['discharge'] = pd.to_datetime(df['discharge'], format='%Y%m%d')

df.loc[df.groupby(['Key']).apply(lambda x : (x['admit']<=x['admit'].shift(-1))&(x['discharge'] > x['admit'].shift(-1))).values,'flag']='Initial_Overlap'

让我们填充“overlap”,检查“admit”是否位于上一个“Initial_Overlap”的日期之间。使用cumsum将“Intial_Overlap”记录分组到下一个“Initial Overlap”:

df['flag'] = df.flag.fillna('Overlap')\
.where(df.groupby(df.flag.notnull().cumsum(), group_keys=False)
.apply(lambda x: x.admit.between(x.admit.iloc[0],
x.discharge.iloc[0])))
df1 = df[df.flag.isnull()]
df2 = df[df.flag.notnull()]

输出:

print(df1)
Key Num1 Num2 admit discharge flag
5 10003 13 126 2012-11-10 2012-11-11 NaN
6 10034 16 127 2012-05-16 2012-05-20 NaN
7 10034 13 128 2012-05-20 2012-05-22 NaN

print(df2)
Key Num1 Num2 admit discharge flag
0 10003 12 121 2012-05-06 2012-05-15 Initial_Overlap
1 10003 13 122 2012-05-08 2012-05-08 Overlap
2 10003 13 122 2012-05-10 2012-05-12 Overlap
3 10003 12 124 2012-10-10 2012-10-16 Initial_Overlap
4 10003 13 125 2012-10-10 2012-10-23 Overlap

编辑:将标志更改为标志

关于python - 如何在迭代pandas期间将行移动到新的df中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49308542/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com