gpt4 book ai didi

python - pandas 数据框中有效值(非空行)的移动平均值

转载 作者:太空宇宙 更新时间:2023-11-03 13:58:50 28 4
gpt4 key购买 nike

我有一个像这样的 df:

                    a001         a002         a003         a004         a005  
time_axis
2017-02-07 1 NaN NaN NaN NaN
2017-02-14 NaN NaN NaN NaN NaN
2017-03-20 NaN NaN 2 NaN NaN
2017-04-03 NaN 3 NaN NaN NaN
2017-05-15 NaN NaN NaN NaN NaN
2017-06-05 NaN NaN NaN NaN NaN
2017-07-10 NaN 6 NaN NaN NaN
2017-07-17 4 NaN NaN NaN NaN
2017-07-24 NaN NaN NaN 1 NaN
2017-08-07 NaN NaN NaN NaN NaN
2017-08-14 NaN NaN NaN NaN NaN
2017-08-28 NaN NaN NaN NaN 5

我想对前 3 个有效值(不是空行)的每一行进行滚动平均值并保存在另一个 df 中:

                  last_3           
time_axis
2017-02-07 1 # still there is only a row
2017-02-14 1 # only a valid value(in the first row) -> average is the value itself
2017-03-20 1.5 # average on the previous rows (only 2 rows contain value-> (2+1)/2
2017-04-03 2 # average on the previous rows with non-NaN values(2017-02-14 excluded) (2+3+1)/3
2017-05-15 2 # Same reason as the previous row
2017-06-05 2 # Same reason
2017-07-10 3.6 # Now the considered values are:2,3,6
2017-07-17 4.3 # considered values: 4,6,3
2017-07-24 3.6 # considered values: 1,4,6
2017-08-07 3.6 # no new values in this row, so again 1,4,6
2017-08-14 3.6 # same reason
2017-08-28 3.3 # now the considered values are: 5,1,4

我试图删除第一个数据框中的空行,然后应用 rollingmean ,但我认为这是错误的方法(df1在我的示例中已经存在):

df2 = df.dropna(how='all')
df1['last_3'] = df2.mean(axis=1).rolling(window=3, min_periods=3).mean()

最佳答案

我认为你需要:

df2 = df.dropna(how='all')
df['last_3'] = df2.mean(axis=1).rolling(window=3, min_periods=1).mean()
df['last_3'] = df['last_3'].ffill()
print (df)
a001 a002 a003 a004 a005 last_3
2017-02-07 1.0 NaN NaN NaN NaN 1.000000
2017-02-14 NaN NaN NaN NaN NaN 1.000000
2017-03-20 NaN NaN 2.0 NaN NaN 1.500000
2017-04-03 NaN 3.0 NaN NaN NaN 2.000000
2017-05-15 NaN NaN NaN NaN NaN 2.000000
2017-06-05 NaN NaN NaN NaN NaN 2.000000
2017-07-10 NaN 6.0 NaN NaN NaN 3.666667
2017-07-17 4.0 NaN NaN NaN NaN 4.333333
2017-07-24 NaN NaN NaN 1.0 NaN 3.666667
2017-08-07 NaN NaN NaN NaN NaN 3.666667
2017-08-14 NaN NaN NaN NaN NaN 3.666667
2017-08-28 NaN NaN NaN NaN 5.0 3.333333

关于python - pandas 数据框中有效值(非空行)的移动平均值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49403610/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com