gpt4 book ai didi

python - 为 Keras 编写自定义数据生成器

转载 作者:太空宇宙 更新时间:2023-11-03 13:58:13 24 4
gpt4 key购买 nike

我将每个数据点存储在一个 .npy 文件中,shape=(1024,7,8)。我想通过类似于 ImageDataGenerator 的方式将它们加载到 Keras 模型中,所以我编写并尝试了不同的自定义生成器,但它们都不起作用,这是我改编自 this 的一个

def find(dirpath, prefix=None, suffix=None, recursive=True):
"""Function to find recursively all files with specific prefix and suffix in a directory
Return a list of paths
"""
l = []
if not prefix:
prefix = ''
if not suffix:
suffix = ''
for (folders, subfolders, files) in os.walk(dirpath):
for filename in [f for f in files if f.startswith(prefix) and f.endswith(suffix)]:
l.append(os.path.join(folders, filename))
if not recursive:
break
l
return l

def generate_data(directory, batch_size):
i = 0
file_list = find(directory)
while True:
array_batch = []
for b in range(batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1

array = np.load(sample)
array_batch.append(array)

yield array_batch

我发现它缺少标签,所以它不会适合使用 fit_generator 的模型。如果我可以将标签存储在一个 numpy 数组中,我该如何将标签添加到此生成器中?

最佳答案

from tensorflow.python.keras.utils import Sequence
import numpy as np

class Mygenerator(Sequence):
def __init__(self, x_set, y_set, batch_size):
self.x, self.y = x_set, y_set
self.batch_size = batch_size

def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))

def __getitem__(self, idx):
batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]

# read your data here using the batch lists, batch_x and batch_y
x = [my_readfunction(filename) for filename in batch_x]
y = [my_readfunction(filename) for filename in batch_y]
return np.array(x), np.array(y)

关于python - 为 Keras 编写自定义数据生成器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52754492/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com