- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用函数模型 API,我想在 Keras 中创建以下自定义损失函数:
我正在实现一个无监督的 CNN,值 Ix、Iy、It 和 epsilon 是常量,u 和 v 是我要学习的参数。
到目前为止,我的尝试失败了,当我尝试训练模型时,我的模型返回了一个 ValueError,显示“不支持任何值”。搜索谷歌后我发现这是由于我的损失不可微分。
有人可以告诉我如何以 Keras 可微分的方式正确创建此损失函数吗?我的代码如下,如有任何帮助,我们将不胜感激。
def charbonnier(I_x, I_y, I_t, U, V, e):
def charb(y_true, y_pred):
loss = K.sqrt(K.pow((multiply([U, I_x]) + multiply([V, I_y]) + I_t), 2) + e)
return K.mean(loss, axis=-1)
return charb
# Return the tf session used by the backend (optional)
tf_session = K.get_session()
def cnn(frame1, frame2):
# Concatenate the two images into one tensor.
input_ = np.dstack((frame1, frame2))
input_ = np.expand_dims(input_, axis=0)
print(input_.shape)
# Compute derivatives
I_x, I_y, I_t = compute_derivatives(input_)
#input_ = K.variable(input_)
inp_shape = (1, frame1.shape[0], frame1.shape[1], 2)
inp = Input(batch_shape=inp_shape)
conv1 = Conv2D(256, (7, 7), activation='relu', padding='same')(inp)
conv2 = Conv2D(256, (5, 5), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(512, (5, 5), activation='relu', padding='same')(pool1)
conv4 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv3)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool2)
conv6 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv6)
conv7 = Conv2D(1024, (3, 3), activation='relu', padding='same')(pool3)
conv8 = Conv2D(512, (1, 1), activation='relu', padding='same')(conv7)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv8)
conv9 = Conv2D(256, (5, 5), activation='relu', padding='same')(pool4)
upsample1 = UpSampling2D(size=(2, 2))(conv9)
conv10 = Conv2D(128, (5, 5), activation='relu', padding='same')(upsample1)
upsample2 = UpSampling2D(size=(2, 2))(conv10)
conv11 = Conv2D(64, (5, 5), activation='relu', padding='same')(upsample2)
upsample3 = UpSampling2D(size=(2, 2))(conv11)
conv12 = Conv2D(2, (15, 13), padding='same')(upsample3)
leaky_relu = LeakyReLU(alpha=0.3)(conv12)
upsample4 = UpSampling2D(size=(2, 2), name='flow')(leaky_relu)
model = Model(inputs=inp, outputs=upsample4)
U = K.variable(model.output[0, :, :, 0])
V = K.variable(model.output[0, :, :, 1])
e = K.constant(0.1)
c_loss = charbonnier(I_x, I_y, I_t, U, V, e)
model.compile(loss=c_loss, optimizer='adam')
model.fit(input_, input_, batch_size=1, epochs=10)
model.evaluate()
最佳答案
已解决。
变量 U 和 V 应按如下方式创建:
U = model.output[0, :, :, 0]
V = model.output[0, :, :, 1]
关于python - 如何在 Keras 中创建这个自定义损失函数并确保它是可微的?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49458833/
我是pytorch的新手。请问添加'loss.item()'有什么区别?以下2部分代码: for epoch in range(epochs): trainingloss =0 for
我有一个包含 4 列的 MySQL 表,如下所示。 TransactionID | Item | Amount | Date ------------------------------------
我目前正在使用 cocos2d、Box2D 和 Objective-C 为 iPad 和 iPhone 制作游戏。 每次更新都会发生很多事情,很多事情必须解决。 我最近将我的很多代码重构为几个小方法,
我一直在关注 Mixed Precision Guide .因此,我正在设置: keras.mixed_precision.set_global_policy(mixed_precision) 像这样
double lnumber = Math.pow(2, 1000); 打印 1.0715086071862673E301 我尝试过的事情 我尝试使用 BigDecimal 类来扩展这个数字: St
我正在尝试创建一个神经网络来近似函数(正弦、余弦、自定义...),但我在格式上遇到困难,我不想使用输入标签,而是使用输入输出。我该如何更改它? 我正在关注this tutorial import te
我有一个具有 260,000 行和 35 列的“单热编码”(全一和零)数据矩阵。我正在使用 Keras 训练一个简单的神经网络来预测一个连续变量。制作网络的代码如下: model = Sequenti
什么是像素级 softmax 损失?在我的理解中,这只是一个交叉熵损失,但我没有找到公式。有人能帮我吗?最好有pytorch代码。 最佳答案 您可以阅读 here所有相关内容(那里还有一个指向源代码的
我正在训练一个 CNN 架构来使用 PyTorch 解决回归问题,其中我的输出是一个 20 个值的张量。我计划使用 RMSE 作为模型的损失函数,并尝试使用 PyTorch 的 nn.MSELoss(
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我正在使用 Keras 2.0.2 功能 API (Tensorflow 1.0.1) 来实现一个网络,该网络接受多个输入并产生两个输出 a 和 b。我需要使用 cosine_proximity 损失
我正在尝试设置很少层的神经网络,这将解决简单的回归问题,这应该是f(x) = 0,1x 或 f(x) = 10x 所有代码如下所示(数据生成和神经网络) 4 个带有 ReLu 的全连接层 损失函数 R
我正在研究在 PyTorch 中使用带有梯度惩罚的 Wasserstein GAN,但始终得到大的、正的生成器损失,并且随着时间的推移而增加。 我从 Caogang's implementation
我正在尝试在 TensorFlow 中实现最大利润损失。这个想法是我有一些积极的例子,我对一些消极的例子进行了采样,并想计算类似的东西 其中 B 是我的批处理大小,N 是我要使用的负样本数。 我是 t
我正在尝试预测一个连续值(第一次使用神经网络)。我已经标准化了输入数据。我不明白为什么我会收到 loss: nan从第一个纪元开始的输出。 我阅读并尝试了以前对同一问题的回答中的许多建议,但没有一个对
我目前正在学习神经网络,并尝试训练 MLP 以使用 Python 中的反向传播来学习 XOR。该网络有两个隐藏层(使用 Sigmoid 激活)和一个输出层(也是 Sigmoid)。 网络(大约 20,
尝试在 keras 中自定义损失函数(平滑 L1 损失),如下所示 ValueError: Shape must be rank 0 but is rank 5 for 'cond/Switch' (
我试图在 tensorflow 中为门牌号图像创建一个卷积神经网络 http://ufldl.stanford.edu/housenumbers/ 当我运行我的代码时,我在第一步中得到了 nan 的成
我正在尝试使用我在 Keras 示例( https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder
我试图了解 CTC 损失如何用于语音识别以及如何在 Keras 中实现它。 我认为我理解的内容(如果我错了,请纠正我!)总体而言,CTC 损失被添加到经典网络之上,以便逐个元素(对于文本或语音而言逐个
我是一名优秀的程序员,十分优秀!