gpt4 book ai didi

python - 是否可以只卡住 pytorch 嵌入层中的某些嵌入权重?

转载 作者:太空宇宙 更新时间:2023-11-03 13:56:30 25 4
gpt4 key购买 nike

在 NLP 任务中使用 GloVe 嵌入时,数据集中的某些单词可能不存在于 GloVe 中。因此,我们为这些未知词实例化随机权重。

是否可以卡住从 GloVe 获得的权重,并仅训练新实例化的权重?

我只知道我们可以设置:model.embedding.weight.requires_grad = False

但这使得新词无法训练..

或者有更好的方法来提取单词的语义..

最佳答案

1。将嵌入分成两个单独的对象

一种方法是使用两个单独的嵌入一个用于预训练,另一个用于待训练

GloVe 应该被卡住,而没有预训练表示的那个将从可训练层中取出。

如果您将数据格式化为预训练 token 表示,它的范围比没有 GloVe 表示的 token 更小,则可以完成。假设您的预训练索引在 [0, 300] 范围内,而没有代表的是 [301, 500]。我会按照这些思路去做:

import numpy as np
import torch


class YourNetwork(torch.nn.Module):
def __init__(self, glove_embeddings: np.array, how_many_tokens_not_present: int):
self.pretrained_embedding = torch.nn.Embedding.from_pretrained(glove_embeddings)
self.trainable_embedding = torch.nn.Embedding(
how_many_tokens_not_present, glove_embeddings.shape[1]
)
# Rest of your network setup

def forward(self, batch):
# Which tokens in batch do not have representation, should have indices BIGGER
# than the pretrained ones, adjust your data creating function accordingly
mask = batch > self.pretrained_embedding.num_embeddings

# You may want to optimize it, you could probably get away without copy, though
# I'm not currently sure how
pretrained_batch = batch.copy()
pretrained_batch[mask] = 0

embedded_batch = self.pretrained_embedding(pretrained_batch)

# Every token without representation has to be brought into appropriate range
batch -= self.pretrained_embedding.num_embeddings
# Zero out the ones which already have pretrained embedding
batch[~mask] = 0
non_pretrained_embedded_batch = self.trainable_embedding(batch)

# And finally change appropriate tokens from placeholder embedding created by
# pretrained into trainable embeddings.
embedded_batch[mask] = non_pretrained_embedded_batch[mask]

# Rest of your code
...

假设您的预训练索引在 [0, 300] 范围内,而没有代表的是 [301, 500]。

2。指定标记的零梯度。

这个有点棘手,但我认为它非常简洁且易于实现。因此,如果您获得没有 GloVe 表示的标记的索引,您可以在反向传播之后明确地将它们的梯度归零,这样这些行就不会得到更新。

import torch

embedding = torch.nn.Embedding(10, 3)
X = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])

values = embedding(X)
loss = values.mean()

# Use whatever loss you want
loss.backward()

# Let's say those indices in your embedding are pretrained (have GloVe representation)
indices = torch.LongTensor([2, 4, 5])

print("Before zeroing out gradient")
print(embedding.weight.grad)

print("After zeroing out gradient")
embedding.weight.grad[indices] = 0
print(embedding.weight.grad)

第二种方法的输出:

Before zeroing out gradient
tensor([[0.0000, 0.0000, 0.0000],
[0.0417, 0.0417, 0.0417],
[0.0833, 0.0833, 0.0833],
[0.0417, 0.0417, 0.0417],
[0.0833, 0.0833, 0.0833],
[0.0417, 0.0417, 0.0417],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0417, 0.0417, 0.0417]])
After zeroing out gradient
tensor([[0.0000, 0.0000, 0.0000],
[0.0417, 0.0417, 0.0417],
[0.0000, 0.0000, 0.0000],
[0.0417, 0.0417, 0.0417],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000],
[0.0417, 0.0417, 0.0417]])

关于python - 是否可以只卡住 pytorch 嵌入层中的某些嵌入权重?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54924582/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com