- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个要计算的总和,但我很难并行化代码。我尝试并行化的计算有点复杂(它同时使用 numpy 数组和 scipy 稀疏矩阵)。它吐出一个 numpy 数组,我想对大约 1000 次计算的输出数组求和。理想情况下,我会在所有迭代中保持运行总和。但是,我一直无法弄清楚如何执行此操作。
到目前为止,我已经尝试将 joblib 的 Parallel 函数和 pool.map 函数与 python 的多处理包一起使用。对于这两者,我使用了一个返回 numpy 数组的内部函数。这些函数返回一个列表,我将其转换为一个 numpy 数组,然后求和。
然而,joblib Parallel 函数完成所有迭代后,主程序再也没有继续运行(看起来原来的作业处于挂起状态,使用 0% CPU)。当我使用 pool.map 时,在所有迭代完成后出现内存错误。
有没有办法简单地并行化数组的运行总和?
编辑:目标是执行类似以下的操作,但并行操作除外。
def summers(num_iters):
sumArr = np.zeros((1,512*512)) #initialize sum
for index in range(num_iters):
sumArr = sumArr + computation(index) #computation returns a 1 x 512^2 numpy array
return sumArr
最佳答案
我弄清楚了如何使用多处理、apply_async 和回调对数组总和进行并行处理,所以我将其发布在这里供其他人使用。我用了the example page for Parallel Python对于 Sum 回调类,虽然我实际上并没有使用那个包来实现。不过,它让我想到了使用回调。这是我最终使用的简化代码,它完成了我想要它做的事情。
import multiprocessing
import numpy as np
import thread
class Sum: #again, this class is from ParallelPython's example code (I modified for an array and added comments)
def __init__(self):
self.value = np.zeros((1,512*512)) #this is the initialization of the sum
self.lock = thread.allocate_lock()
self.count = 0
def add(self,value):
self.count += 1
self.lock.acquire() #lock so sum is correct if two processes return at same time
self.value += value #the actual summation
self.lock.release()
def computation(index):
array1 = np.ones((1,512*512))*index #this is where the array-returning computation goes
return array1
def summers(num_iters):
pool = multiprocessing.Pool(processes=8)
sumArr = Sum() #create an instance of callback class and zero the sum
for index in range(num_iters):
singlepoolresult = pool.apply_async(computation,(index,),callback=sumArr.add)
pool.close()
pool.join() #waits for all the processes to finish
return sumArr.value
我还能够使用并行映射来实现这一点,这是在另一个答案中提出的建议。我之前试过这个,但我没有正确实现。两种方法都有效,我认为 this answer很好地解释了使用哪种方法(map 或 apply.async)的问题。对于 map 版本,您不需要定义类 Sum 并且 summers 函数变为
def summers(num_iters):
pool = multiprocessing.Pool(processes=8)
outputArr = np.zeros((num_iters,1,512*512)) #you wouldn't have to initialize these
sumArr = np.zeros((1,512*512)) #but I do to make sure I have the memory
outputArr = np.array(pool.map(computation, range(num_iters)))
sumArr = outputArr.sum(0)
pool.close() #not sure if this is still needed since map waits for all iterations
return sumArr
关于python - 如何在 python numpy 中并行化求和计算?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9068478/
有没有办法同时运行 2 个不同的代码块。我一直在研究 R 中的并行包,它们似乎都基于在循环中运行相同的函数。我正在寻找一种同时运行不同函数的方法(循环的 1 次迭代)。例如,我想在某个数据对象上创建一
无论如何增加 Parallel.For 启动后的循环次数?示例如下: var start = 0; var end = 5; Parallel.For(start, end, i => { C
我是 Golang 的新手,正在尝试了解并发和并行。我阅读了下面提到的关于并发和并行的文章。我执行了相同的程序。但没有得到相同的(混合字母和字符)输出。首先获取所有字母,然后获取字符。似乎并发不工作,
我正在寻找同时迭代 R 中两个或多个字符向量/列表的方法,例如。有没有办法做这样的事情: foo <- c('a','c','d') bar <- c('aa','cc','dd') for(i in
我对 Raku 很陌生,我对函数式方法有疑问,尤其是 reduce。 我最初有这样的方法: sub standardab{ my $mittel = mittel(@_); my $foo =
我最近花了很多时间来学习实时音频处理的细节,我发现的大多数库/工具都是c / c++代码或脚本/图形语言的形式,并在其中编译了c / c++代码。引擎盖。 使用基于回调的API,与GUI或App中的其
我正在使用 JMeter 进行图像负载测试。我有一个图像名称数组并遍历该数组,我通过 HTTP 请求获取所有图像。 -> loop_over_image - for loop controller
我整个晚上都在困惑这个问题...... makeflags = ['--prefix=/usr','--libdir=/usr/lib'] rootdir='/tmp/project' ps = se
我正在尝试提高计算图像平均值的方法的性能。 为此,我使用了两个 For 语句来迭代所有图像,因此我尝试使用一个 Parallel For 来改进它,但结果并不相同。 我做错了吗?或者是什么导致了差异?
假设您有一个并行 for 循环实现,例如ConcRT parallel_for,将所有工作放在一个 for 循环体内总是最好的吗? 举个例子: for(size_t i = 0; i < size()
我想并行运行一部分代码。目前我正在使用 Parallel.For 如何让10、20或40个线程同时运行 我当前的代码是: Parallel.For(1, total, (ii) =>
我使用 PAY API 进行了 PayPal 自适应并行支付,其中无论用户(买家)购买什么,都假设用户购买了总计 100 美元的商品。在我的自适应并行支付中,有 2 个接收方:Receiver1 和
我正在考虑让玩家加入游戏的高效算法。由于会有大量玩家,因此算法应该是异步的(即可扩展到集群中任意数量的机器)。有细节:想象有一个无向图(每个节点都是一个玩家)。玩家之间的每条边意味着玩家可以参加同一场
我有一个全局变量 volatile i = 0; 和两个线程。每个都执行以下操作: i++; System.out.print(i); 我收到以下组合。 12、21 和 22。 我理解为什么我没有得到
我有以下称为 pgain 的方法,它调用我试图并行化的方法 dist: /***************************************************************
我有一个 ruby 脚本读取一个巨大的表(约 2000 万行),进行一些处理并将其提供给 Solr 用于索引目的。这一直是我们流程中的一大瓶颈。我打算在这里加快速度,我想实现某种并行性。我对 Ru
我正在研究 Golang 并遇到一个问题,我已经研究了几天,我似乎无法理解 go routines 的概念以及它们的使用方式。 基本上我是在尝试生成数百万条随机记录。我有生成随机数据的函数,并将创建一
我希望 for 循环使用 go 例程并行。我尝试使用 channel ,但没有用。我的主要问题是,我想在继续之前等待所有迭代完成。这就是为什么在它不起作用之前简单地编写 go 的原因。我尝试使用 ch
我正在使用 import Control.Concurrent.ParallelIO.Global main = parallel_ (map processI [1..(sdNumber runPa
我正在尝试通过 makePSOCKcluster 连接到另一台计算机: library(parallel) cl ... doTryCatch -> recvData -> makeSOCKm
我是一名优秀的程序员,十分优秀!