gpt4 book ai didi

python - TfidfVectorizer NotFittedError

转载 作者:太空宇宙 更新时间:2023-11-03 13:36:47 30 4
gpt4 key购买 nike

我正在使用 sklearn Pipeline 和 FeatureUnion 从文本文件创建特征,我想打印出特征名称。

首先,我将所有转换收集到一个列表中。

In [225]:components
Out[225]:
[TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=0.85, max_features=None, min_df=6,
ngram_range=(1, 1), norm='l1', preprocessor=None, smooth_idf=True,
stop_words='english', strip_accents=None, sublinear_tf=True,
token_pattern=u'(?u)[#a-zA-Z0-9/\\-]{2,}',
tokenizer=StemmingTokenizer(proc_type=stem, token_pattern=(?u)[a-zA-Z0-9/\-]{2,}),
use_idf=True, vocabulary=None),
TruncatedSVD(algorithm='randomized', n_components=150, n_iter=5,
random_state=None, tol=0.0),
TextStatsFeatures(),
DictVectorizer(dtype=<type 'numpy.float64'>, separator='=', sort=True,
sparse=True),
DictVectorizer(dtype=<type 'numpy.float64'>, separator='=', sort=True,
sparse=True),
TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=0.85, max_features=None, min_df=6,
ngram_range=(1, 2), norm='l1', preprocessor=None, smooth_idf=True,
stop_words='english', strip_accents=None, sublinear_tf=True,
token_pattern=u'(?u)[a-zA-Z0-9/\\-]{2,}',
tokenizer=StemmingTokenizer(proc_type=stem, token_pattern=(?u)[a-zA-Z0-9/\-]{2,}),
use_idf=True, vocabulary=None)]

例如,第一个组件是一个 TfidfVectorizer() 对象。

components[0]
Out[226]:
TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=0.85, max_features=None, min_df=6,
ngram_range=(1, 1), norm='l1', preprocessor=None, smooth_idf=True,
stop_words='english', strip_accents=None, sublinear_tf=True,
token_pattern=u'(?u)[#a-zA-Z0-9/\\-]{2,}',
tokenizer=StemmingTokenizer(proc_type=stem, token_pattern=(?u)[a-zA-Z0-9/\-]{2,}),
use_idf=True, vocabulary=None)

type(components[0])
Out[227]: sklearn.feature_extraction.text.TfidfVectorizer

但是当我尝试使用 TfidfVectorizer 方法 get_feature_names 时,它会抛出 NotFittedError

components[0].get_feature_names()
Traceback (most recent call last):

File "<ipython-input-228-0160deb904f5>", line 1, in <module>
components[0].get_feature_names()

File "C:\Users\fheng\AppData\Local\Continuum\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 903, in get_feature_names
self._check_vocabulary()

File "C:\Users\fheng\AppData\Local\Continuum\Anaconda\lib\site-packages\sklearn\feature_extraction\text.py", line 275, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),

File "C:\Users\fheng\AppData\Local\Continuum\Anaconda\lib\site-packages\sklearn\utils\validation.py", line 678, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})

**NotFittedError: TfidfVectorizer - Vocabulary wasn't fitted.**

最佳答案

您是否在pipelinefeatureUnion 中使用过此列表?您是否对它们调用了 fit() 方法?

此错误是您没有调用 fit()(即训练模型)并直接尝试访问值。

关于python - TfidfVectorizer NotFittedError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38382981/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com