- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我已经实现了一个 Gibbs 采样器来生成纹理图像。根据beta
参数(shape(4)数组),我们可以生成各种纹理。
这是我使用 Numpy 的初始函数:
def gibbs_sampler(img_label, betas, burnin, nb_samples):
nb_iter = burnin + nb_samples
lst_samples = []
labels = np.unique(img)
M, N = img.shape
img_flat = img.flatten()
# build neighborhood array by means of numpy broadcasting:
m, n = np.ogrid[0:M, 0:N]
top_left, top, top_right = m[0:-2, :]*N + n[:, 0:-2], m[0:-2, :]*N + n[:, 1:-1] , m[0:-2, :]*N + n[:, 2:]
left, pix, right = m[1:-1, :]*N + n[:, 0:-2], m[1:-1, :]*N + n[:, 1:-1], m[1:-1, :]*N + n[:, 2:]
bottom_left, bottom, bottom_right = m[2:, :]*N + n[:, 0:-2], m[2:, :]*N + n[:, 1:-1], m[2:, :]*N + n[:, 2:]
mat_neigh = np.dstack([pix, top, bottom, left, right, top_left, bottom_right, bottom_left, top_right])
mat_neigh = mat_neigh.reshape((-1, 9))
ind = np.arange((M-2)*(N-2))
# loop over iterations
for iteration in np.arange(nb_iter):
np.random.shuffle(ind)
# loop over pixels
for i in ind:
truc = map(functools.partial(lambda label, img_flat, mat_neigh : 1-np.equal(label, img_flat[mat_neigh[i, 1:]]).astype(np.uint), img_flat=img_flat, mat_neigh=mat_neigh), labels)
# bidule is of shape (4, 2, labels.size)
bidule = np.array(truc).T.reshape((-1, 2, labels.size))
# theta is of shape (labels.size, 4)
theta = np.sum(bidule, axis=1).T
# prior is thus an array of shape (labels.size)
prior = np.exp(-np.dot(theta, betas))
# sample from the posterior
drawn_label = np.random.choice(labels, p=prior/np.sum(prior))
img_flat[(i//(N-2) + 1)*N + i%(N-2) + 1] = drawn_label
if iteration >= burnin:
print('Iteration %i --> sample' % iteration)
lst_samples.append(copy.copy(img_flat.reshape(M, N)))
else:
print('Iteration %i --> burnin' % iteration)
return lst_samples
我们无法摆脱任何循环,因为它是一种迭代算法。因此,我尝试通过使用 Cython(使用静态类型)来加快速度:
from __future__ import division
import numpy as np
import copy
cimport numpy as np
import functools
cimport cython
INTTYPE = np.int
DOUBLETYPE = np.double
ctypedef np.int_t INTTYPE_t
ctypedef np.double_t DOUBLETYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def func_for_map(label, img_flat, mat_neigh, i):
return (1-np.equal(label, img_flat[mat_neigh[i, 1:]])).astype(INTTYPE)
def gibbs_sampler(np.ndarray[INTTYPE_t, ndim=2] img_label, np.ndarray[DOUBLETYPE_t, ndim=1] betas, INTTYPE_t burnin=5, INTTYPE_t nb_samples=1):
assert img_label.dtype == INTTYPE and betas.dtype== DOUBLETYPE
cdef unsigned int nb_iter = burnin + nb_samples
lst_samples = list()
cdef np.ndarray[INTTYPE_t, ndim=1] labels
labels = np.unique(img_label)
cdef unsigned int M, N
M = img_label.shape[0]
N = img_label.shape[1]
cdef np.ndarray[INTTYPE_t, ndim=1] ind
ind = np.arange((M-2)*(N-2), dtype=INTTYPE)
cdef np.ndarray[INTTYPE_t, ndim=1] img_flat
img_flat = img_label.flatten()
# build neighborhood array:
cdef np.ndarray[INTTYPE_t, ndim=2] m
cdef np.ndarray[INTTYPE_t, ndim=2] n
m = (np.ogrid[0:M, 0:N][0]).astype(INTTYPE)
n = (np.ogrid[0:M, 0:N][1]).astype(INTTYPE)
cdef np.ndarray[INTTYPE_t, ndim=2] top_left, top, top_right, left, pix, right, bottom_left, bottom, bottom_right
top_left, top, top_right = m[0:-2, :]*N + n[:, 0:-2], m[0:-2, :]*N + n[:, 1:-1] , m[0:-2, :]*N + n[:, 2:]
left, pix, right = m[1:-1, :]*N + n[:, 0:-2], m[1:-1, :]*N + n[:, 1:-1], m[1:-1, :]*N + n[:, 2:]
bottom_left, bottom, bottom_right = m[2:, :]*N + n[:, 0:-2], m[2:, :]*N + n[:, 1:-1], m[2:, :]*N + n[:, 2:]
cdef np.ndarray[INTTYPE_t, ndim=3] mat_neigh_init
mat_neigh_init = np.dstack([pix, top, bottom, left, right, top_left, bottom_right, bottom_left, top_right])
cdef np.ndarray[INTTYPE_t, ndim=2] mat_neigh
mat_neigh = mat_neigh_init.reshape((-1, 9))
cdef unsigned int i
truc = list()
cdef np.ndarray[INTTYPE_t, ndim=3] bidule
cdef np.ndarray[INTTYPE_t, ndim=2] theta
cdef np.ndarray[DOUBLETYPE_t, ndim=1] prior
cdef unsigned int drawn_label, iteration
# loop over ICE iterations
for iteration in np.arange(nb_iter):
np.random.shuffle(ind)
# loop over pixels
for i in ind:
truc = map(functools.partial(func_for_map, img_flat=img_flat, mat_neigh=mat_neigh, i=i), labels)
bidule = np.array(truc).T.reshape((-1, 2, labels.size)).astype(INTTYPE)
theta = np.sum(bidule, axis=1).T
# ok so far
prior = np.exp(-np.dot(theta, betas)).astype(DOUBLETYPE)
# print('ok after prior')
# return 0
# sample from the posterior
drawn_label = np.random.choice(labels, p=prior/np.sum(prior))
img_flat[(i//(N-2) + 1)*N + i%(N-2) + 1] = drawn_label
if iteration >= burnin:
print('Iteration %i --> sample' % iteration)
lst_samples.append(copy.copy(img_flat.reshape(M, N)))
else:
print('Iteration %i --> burnin' % iteration)
return lst_samples
但是,我得到的计算时间几乎相同,numpy 版本比 Cython 版本略快。
因此,我正在尝试改进 Cython 代码。
编辑:
对于两个函数(Cython 和非 Cython):我已经替换了:
truc = map(functools.partial(lambda label, img_flat, mat_neigh : 1-np.equal(label, img_flat[mat_neigh[i, 1:]]).astype(np.uint), img_flat=img_flat, mat_neigh=mat_neigh), labels)
通过广播:
truc = 1-np.equal(labels[:, None], img_flat[mat_neigh[i, 1:]][None, :])
所有 np.arange
由 range
计算,并且先验的计算现在通过 np.einsum
完成,正如 Divakar 所建议的。
这两个函数都比以前更快,但 Python 函数仍然比 Cython 函数快一些。
最佳答案
我已经运行了 Cython in annotated mode在您的来源上,并查看了结果。也就是说,将其保存在 q.pyx
中后,我运行了
cython -a q.pyx
firefox q.html
(当然,使用任何你想要的浏览器)。
代码颜色为深黄色,表明就Cython而言,代码远非静态类型。 AFAICT,这分为两类。
在某些情况下,您最好静态输入代码:
在 for iteration in np.arange(nb_iter):
和 for i in ind:
中,您需要为每次迭代支付大约 30 行 C 代码。参见 here如何在 Cython 中高效访问 numpy
数组。
在 truc = map(functools.partial(func_for_map, img_flat=img_flat, mat_neigh=mat_neigh, i=i), labels)
中,您并没有真正从静态中获得任何好处打字。我建议您cdef
函数func_for_map
,然后自己在循环中调用它。
在其他情况下,您正在调用 numpy
向量化函数,例如,theta = np.sum(bidule, axis=1).T
, prior = np.exp(-np.dot(theta, betas)).astype(DOUBLETYPE)
等。在这些情况下,Cython 确实没有太大优势。
关于python - Cython Gibbs 采样器比 numpy 采样器稍慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40246152/
出于好奇,我做了一个实验。我想看看 strtolower() 之间是否存在细微差异和 strtoupper() .我期待 strtolower()在大多数小写字符串上会更快,反之亦然。我发现的是 st
为什么在 Expression.Call 上构建的编译 lambda 比应该做同样事情的委托(delegate)稍慢?以及如何避免呢? 解释 BenchmarkDotNet 结果。我们正在比较 Cal
我对我对 make_shared 性能( boost 或 STL)的理解有点怀疑,所以我想听听一些意见。 在 C++ 中开发应用程序时,我不得不进行一些性能测试,最后我比较了 make_shared
我是一名优秀的程序员,十分优秀!