- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
背景
我有一个用零初始化的一维 NumPy 数组。
import numpy as np
section = np.zeros(1000)
然后我有一个 Pandas DataFrame,其中有两列索引:
d= {'start': {0: 7200, 1: 7500, 2: 7560, 3: 8100, 4: 11400},
'end': {0: 10800, 1: 8100, 2: 8100, 3: 8150, 4: 12000}}
df = pd.DataFrame(data=d, columns=['start', 'end'])
对于每一对索引,我想将 numpy 数组中相应索引的值设置为 True。
我目前的解决方案
我可以通过对 DataFrame 应用一个函数来做到这一点:
def fill_array(row):
section[row.start:row.end] = True
df.apply(fill_array, axis=1)
我想向量化这个操作
这如我所料,但为了好玩,我想对操作进行向量化。我对此不是很精通,我的在线搜索也没有让我走上正轨。
如果可能的话,我将非常感谢任何关于如何将其变成向量操作的建议。
最佳答案
实现要遵循的技巧是,我们将 1s
放在每个开始点,-1s
放在零初始化的 int 数组的每个结束点。接下来是真正的技巧,因为我们会对其进行累加求和,从而为 bin(开始 - 停止对)边界所覆盖的位置提供非零数字。因此,最后一步是为最终输出寻找非零值作为 bool 数组。因此,我们将有两个矢量化解决方案,其实现如下所示 -
def filled_array(start, end, length):
out = np.zeros((length), dtype=int)
np.add.at(out,start,1)
np.add.at(out,end,-1)
return out.cumsum()>0
def filled_array_v2(start, end, length): #Using @Daniel's suggestion
out =np.bincount(start, minlength=length) - np.bincount(end, minlength=length)
return out.cumsum().astype(bool)
sample 运行-
In [2]: start
Out[2]: array([ 4, 7, 5, 15])
In [3]: end
Out[3]: array([12, 12, 7, 17])
In [4]: out = filled_array(start, end, length=20)
In [7]: pd.DataFrame(out) # print as dataframe for easy verification
Out[7]:
0
0 False
1 False
2 False
3 False
4 True
5 True
6 True
7 True
8 True
9 True
10 True
11 True
12 False
13 False
14 False
15 True
16 True
17 False
18 False
19 False
关于python - 用索引从数组中填充 1D numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45057110/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!