- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 keras(作为诊断工具)计算关于神经网络权重的梯度范数。最终,我想为此创建一个回调,但在此过程中,我一直致力于创建一个函数,该函数可以计算梯度并以 numpy 数组/标量值(而不仅仅是 tensorflow )的形式返回实际值张量)。代码如下:
import numpy as np
import keras.backend as K
from keras.layers import Dense
from keras.models import Sequential
def get_gradient_norm_func(model):
grads = K.gradients(model.total_loss, model.trainable_weights)
summed_squares = [K.sum(K.square(g)) for g in grads]
norm = K.sqrt(sum(summed_squares))
func = K.function([model.input], [norm])
return func
def main():
x = np.random.random((128,)).reshape((-1, 1))
y = 2 * x
model = Sequential(layers=[Dense(2, input_shape=(1,)),
Dense(1)])
model.compile(loss='mse', optimizer='RMSprop')
get_gradient = get_gradient_norm_func(model)
history = model.fit(x, y, epochs=1)
print(get_gradient([x]))
if __name__ == '__main__':
main()
代码在调用 get_gradient()
时失败。追溯很长,涉及很多关于形状的信息,但关于什么是正确形状的信息很少。我该如何纠正这个问题?
理想情况下,我想要一个与后端无关的解决方案,但基于 tensorflow 的解决方案也是一个选项。
2017-08-15 15:39:14.914388: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1,-1] has negative dimensions
2017-08-15 15:39:14.914414: E tensorflow/core/common_runtime/executor.cc:644] Executor failed to create kernel. Invalid argument: Shape [-1,-1] has negative dimensions
[[Node: dense_2_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
2017-08-15 15:39:14.915026: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1,-1] has negative dimensions
2017-08-15 15:39:14.915038: E tensorflow/core/common_runtime/executor.cc:644] Executor failed to create kernel. Invalid argument: Shape [-1,-1] has negative dimensions
[[Node: dense_2_target = Placeholder[dtype=DT_FLOAT, shape=[?,?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
2017-08-15 15:39:14.915310: W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [-1] has negative dimensions
2017-08-15 15:39:14.915321: E tensorflow/core/common_runtime/executor.cc:644] Executor failed to create kernel. Invalid argument: Shape [-1] has negative dimensions
[[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1139, in _do_call
return fn(*args)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1121, in _run_fn
status, run_metadata)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/contextlib.py", line 89, in __exit__
next(self.gen)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape [-1] has negative dimensions
[[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "gradientlog.py", line 45, in <module>
main()
File "gradientlog.py", line 42, in main
print(get_gradient([x]))
File "/home/josteb/sandbox/keras/keras/backend/tensorflow_backend.py", line 2251, in __call__
**self.session_kwargs)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 997, in _run
feed_dict_string, options, run_metadata)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1132, in _do_run
target_list, options, run_metadata)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape [-1] has negative dimensions
[[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op 'dense_2_sample_weights', defined at:
File "gradientlog.py", line 45, in <module>
main()
File "gradientlog.py", line 39, in main
model.compile(loss='mse', optimizer='RMSprop')
File "/home/josteb/sandbox/keras/keras/models.py", line 783, in compile
**kwargs)
File "/home/josteb/sandbox/keras/keras/engine/training.py", line 799, in compile
name=name + '_sample_weights'))
File "/home/josteb/sandbox/keras/keras/backend/tensorflow_backend.py", line 435, in placeholder
x = tf.placeholder(dtype, shape=shape, name=name)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1530, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1954, in _placeholder
name=name)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
op_def=op_def)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/josteb/.local/opt/anaconda3/envs/timeseries/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Shape [-1] has negative dimensions
[[Node: dense_2_sample_weights = Placeholder[dtype=DT_FLOAT, shape=[?], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
最佳答案
Keras中有几个与梯度计算过程相关的占位符:
x
y
model.fit()
中提供它,Keras 仍然会为样本权重生成一个占位符,并输入 np.ones((y.shape [0],), dtype=K.floatx())
在训练过程中进入图表。Dropout
),此占位符才会连接到梯度张量。因此,在您提供的示例中,为了计算梯度,您需要将 x
、y
和 sample_weights
馈送到图中.这是错误的根本原因。
在 Model._make_train_function()
里面有 the following lines显示如何在这种情况下构建 K.function()
的必要输入:
inputs = self._feed_inputs + self._feed_targets + self._feed_sample_weights
if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
inputs += [K.learning_phase()]
with K.name_scope('training'):
...
self.train_function = K.function(inputs,
[self.total_loss] + self.metrics_tensors,
updates=updates,
name='train_function',
**self._function_kwargs)
通过模仿这个函数,你应该能够得到范数值:
def get_gradient_norm_func(model):
grads = K.gradients(model.total_loss, model.trainable_weights)
summed_squares = [K.sum(K.square(g)) for g in grads]
norm = K.sqrt(sum(summed_squares))
inputs = model.model._feed_inputs + model.model._feed_targets + model.model._feed_sample_weights
func = K.function(inputs, [norm])
return func
def main():
x = np.random.random((128,)).reshape((-1, 1))
y = 2 * x
model = Sequential(layers=[Dense(2, input_shape=(1,)),
Dense(1)])
model.compile(loss='mse', optimizer='rmsprop')
get_gradient = get_gradient_norm_func(model)
history = model.fit(x, y, epochs=1)
print(get_gradient([x, y, np.ones(len(y))]))
执行输出:
Epoch 1/1
128/128 [==============================] - 0s - loss: 2.0073
[4.4091368]
请注意,由于您使用的是 Sequential
而不是 Model
,因此需要 model.model._feed_*
而不是 model ._feed_*
.
关于python - 使用keras计算梯度范数wrt权重,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45694344/
SQL 和一般开发的新手,我有一个表(COUNTRIES),其中包含字段(INDEX、NAME、POPULATION、AREA) 通常我添加一个客户端(Delphi)计算字段(DENSITY)和 On
我想使用 calc(100%-100px),但在我的 demo 中不起作用由于高度只接受像素,因此如何将此百分比值转换为像素。 最佳答案 以下将为您提供高度: $(window).height();
我正在尝试在 MySQL 中添加列并动态填充其他列。 例如我有一张表“数字”并具有第 1 列、第 2 列、第 3 列,这些总数应填充在第 4 列中 最佳答案 除非我误解了你的问题,否则你不只是在寻找:
我想返回简单计算的结果,但我不确定如何执行此操作。我的表格如下: SELECT COUNT(fb.engineer_id) AS `total_feedback`, SUM(fb.ra
我一直在尝试做这个程序,但我被卡住了,我仍然是一个初学者,任何帮助将不胜感激。我需要程序来做 打印一个 10 X 10 的表格,其中表格中的每个条目都是行号和列号的总和 包含一个累加器,用于计算所有表
这个计算背后一定有一些逻辑。但我无法得到它。普通数学不会导致这种行为。谁能帮我解释一下原因 printf ("float %f\n", 2/7 * 100.0); 结果打印 1.000000 为什么会
我想计算从 0 到 (n)^{1/2} - 1 的数字的 AND每个数字从 0 到 (n)^{1/2} - 1 .我想在 O(n) 中执行此操作时间,不能使用 XOR、OR、AND 运算。 具体来说,
如何在 Excel 中将公式放入自定义数字格式?例如(出于说明目的随机示例), 假设我有以下数据: 输入 输出 在不编辑单元格中的实际数据的情况下,我想显示单元格中的值除以 2,并保留两位小数: 有没
每次我在 Flutter 应用程序中调用计算()时,我都会看到内存泄漏,据我所知,这基本上只是一种生成隔离的便捷方法。我的应用程序内存占用增加并且在 GC 之后永远不会减少。 我已将我的代码简化为仅调
我有数字特征观察 V1通过 V12用于目标变量 Wavelength .我想计算 Vx 之间的 RMSE列。数据格式如下。 每个变量“Vx”以 5 分钟的间隔进行测量。我想计算所有 Vx 变量的观测值
我正在寻找一种使用 C 语言计算文件中未知字符数的简单方法。谢谢你的帮助 最佳答案 POSIX 方式(可能是您想要的方式): off_t get_file_length( FILE *file ) {
我正在使用 Postgres,并且我正试图围绕如何在连续日期跨度中得出第一个开始日期的问题进行思考。例如 :- ID | Start Date | End Date =================
我有一个订单表格,我在其中使用 jQuery 计算插件来汇总总数。 此求和工作正常,但生成的“总和”存在问题。总之,我希望用逗号替换任何点。 代码的基础是; function ($this) {
我在使用 double 变量计算简单算术方程时遇到问题。 我有一个具有 double 属性 Value 的组件,我将此属性设置为 100。 然后我做一个简单的减法来检查这个值是否真的是 100: va
我在这里看到了一些关于 CRC 32 计算的其他问题。但没有一个让我满意,因此是这样。 openssl 库是否有任何用于计算 CRC32 的 api 支持?我已经在为 SHA1 使用 openssl,
当我在PHP日期计算中遇到问题时,我感到惊讶。 $add = '- 30 days'; echo date('Y-m-01', strtotime($add)); // result is 2017-
我正在使用 javascript 进行练习,我编写了这个脚本来计算 2 个变量的总和,然后在第三个方程中使用这个总和!关于如何完成这项工作的任何想法都将非常有用! First Number:
我有一个来自EAC的提示单和一个包含完整专辑的FLAC文件。 我正在尝试制作一些python脚本来播放文件,因为我需要能够设置在flac文件中开始的位置。 如何从CueSheet格式MM:SS:FF转
这个问题已经有答案了: Adding two numbers concatenates them instead of calculating the sum (24 个回答) 已关闭去年。 我有一个
4000 我需要上面字段 name="quantity" 和 id="price" 中的值,并使用 javascript 函数进行计算,并将其显示在字段 id= 中仅当我单击计算按钮时才显示“总
我是一名优秀的程序员,十分优秀!