- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用 Tensorflow 处理 RBF 网络,但是第 112 行出现了这样的错误:ValueError: Cannot feed value of shape (40, 13) for Tensor 'Placeholder:0', which has形状 '(?, 12)'
下面是我的代码。我按照 this tutorial 为我的 RBF 网络创建了自己的激活函数。 .此外,如果您发现有任何其他问题需要修复,请向我指出,因为我是 Tensorflow 的新手,所以获得任何反馈都会很有帮助。
import tensorflow as tf
import numpy as np
import math
from sklearn import datasets
from sklearn.model_selection import train_test_split
from tensorflow.python.framework import ops
ops.reset_default_graph()
RANDOM_SEED = 42
tf.set_random_seed(RANDOM_SEED)
boston = datasets.load_boston()
data = boston["data"]
target = boston["target"]
N_INSTANCES = data.shape[0]
N_INPUT = data.shape[1] - 1
N_CLASSES = 3
TEST_SIZE = 0.1
TRAIN_SIZE = int(N_INSTANCES * (1 - TEST_SIZE))
batch_size = 40
training_epochs = 400
learning_rate = 0.001
display_step = 20
hidden_size = 200
target_ = np.zeros((N_INSTANCES, N_CLASSES))
data_train, data_test, target_train, target_test = train_test_split(data, target_, test_size=0.1, random_state=100)
x_data = tf.placeholder(shape=[None, N_INPUT], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, N_CLASSES], dtype=tf.float32)
# creates activation function
def gaussian_function(input_layer):
initial = math.exp(-2*math.pow(input_layer, 2))
return initial
np_gaussian_function = np.vectorize(gaussian_function)
def d_gaussian_function(input_layer):
initial = -4 * input_layer * math.exp(-2*math.pow(input_layer, 2))
return initial
np_d_gaussian_function = np.vectorize(d_gaussian_function)
np_d_gaussian_function_32 = lambda input_layer: np_d_gaussian_function(input_layer).astype(np.float32)
def tf_d_gaussian_function(input_layer, name=None):
with ops.name_scope(name, "d_gaussian_function", [input_layer]) as name:
y = tf.py_func(np_d_gaussian_function_32, [input_layer],[tf.float32], name=name, stateful=False)
return y[0]
def py_func(func, inp, Tout, stateful=True, name=None, grad=None):
rnd_name = 'PyFunGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(grad)
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": rnd_name}):
return tf.py_func(func, inp, Tout, stateful=stateful, name=name)
def gaussian_function_grad(op, grad):
input_variable = op.inputs[0]
n_gr = tf_d_gaussian_function(input_variable)
return grad * n_gr
np_gaussian_function_32 = lambda input_layer: np_gaussian_function(input_layer).astype(np.float32)
def tf_gaussian_function(input_layer, name=None):
with ops.name_scope(name, "gaussian_function", [input_layer]) as name:
y = py_func(np_gaussian_function_32, [input_layer], [tf.float32], name=name, grad=gaussian_function_grad)
return y[0]
# end of defining activation function
def rbf_network(input_layer, weights):
layer1 = tf.matmul(tf_gaussian_function(input_layer), weights['h1'])
layer2 = tf.matmul(tf_gaussian_function(layer1), weights['h2'])
output = tf.matmul(tf_gaussian_function(layer2), weights['output'])
return output
weights = {
'h1': tf.Variable(tf.random_normal([N_INPUT, hidden_size], stddev=0.1)),
'h2': tf.Variable(tf.random_normal([hidden_size, hidden_size], stddev=0.1)),
'output': tf.Variable(tf.random_normal([hidden_size, N_CLASSES], stddev=0.1))
}
pred = rbf_network(x_data, weights)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y_target))
my_opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y_target, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
sess.run(init)
# Training loop
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(data_train.shape[0] / batch_size)
for i in range(total_batch):
randidx = np.random.randint(int(TRAIN_SIZE), size=batch_size)
batch_xs = data_train[randidx, :]
batch_ys = target_train[randidx, :]
sess.run(my_opt, feed_dict={x_data: batch_xs, y_target: batch_ys})
avg_cost += sess.run(cost, feed_dict={x_data: batch_xs, y_target: batch_ys})/total_batch
if epoch % display_step == 0:
print("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
train_accuracy = sess.run(accuracy, feed_dict={x_data: batch_xs, y_target: batch_ys})
print("Training accuracy: %.3f" % train_accuracy)
test_acc = sess.run(accuracy, feed_dict={x_data: data_test, y_target: target_test})
print("Test accuracy: %.3f" % (test_acc))
sess.close()
最佳答案
如前所述,您应该有 N_Input = data.shape[1]
。
实际上 data.shape[0]
与您在数据集中实现的数量有关,data.shape[1]
告诉我们网络有多少特征应该考虑。
无论您将(通过 feed_dict)向网络建议多少数据,根据定义,特征的数量就是输入层的大小。
加上 boston 数据集是一个回归问题,而 softmax_cross_entropy 是一个用于分类问题的成本函数。您可以尝试 tf.square
来评估您预测的和您想要的之间的欧氏距离:
cost = tf.reduce_mean(tf.square(pred - y_target))
您会看到您的网络正在学习,尽管准确度不是很高。
编辑:
您的代码实际上学习得很好,但您使用了错误的工具来衡量它。
主要是,您的错误仍然在于您处理的是回归问题而不是分类问题。
在分类问题中,您可以使用
评估您正在进行的学习过程的 准确性correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y_target, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
它包括检查预测类是否与预期类相同,对于 x_test 中的输入。
在回归问题中,这样做是没有意义的,因为您正在寻找一个实数,即从分类的角度来看有无限的可能性。
在回归问题中,您可以估计预测值和期望值之间的误差(均值或其他)。我们可以使用我在下面的建议:
cost = tf.reduce_mean(tf.square(pred - y_target))
我修改了你的代码,结果就在这里
pred = rbf_network(x_data, weights)
cost = tf.reduce_mean(tf.square(pred - y_target))
my_opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y_target, 1))
#accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
init = tf.global_variables_initializer()
sess = tf.InteractiveSession()
sess.run(init)
plt.figure("Error evolution")
plt.xlabel("N_epoch")
plt.ylabel("Error evolution")
tol = 5e-4
epoch, err=0, 1
# Training loop
while epoch <= training_epochs and err >= tol:
avg_cost = 0.
total_batch = int(data_train.shape[0] / batch_size)
for i in range(total_batch):
randidx = np.random.randint(int(TRAIN_SIZE), size=batch_size)
batch_xs = data_train[randidx, :]
batch_ys = target_train[randidx, :]
sess.run(my_opt, feed_dict={x_data: batch_xs, y_target: batch_ys})
avg_cost += sess.run(cost, feed_dict={x_data: batch_xs, y_target: batch_ys})/total_batch
plt.plot(epoch, avg_cost, marker='o', linestyle="none", c='k')
plt.pause(0.05)
err = avg_cost
if epoch % 10 == 0:
print("Epoch: {}/{} err = {}".format(epoch, training_epochs, avg_cost))
epoch +=1
print ("End of learning process")
print ("Final epoch = {}/{} ".format(epoch, training_epochs))
print ("Final error = {}".format(err) )
sess.close()
输出是
Epoch: 0/400 err = 0.107879924503
Epoch: 10/400 err = 0.00520248359747
Epoch: 20/400 err = 0.000651647908274
End of learning process
Final epoch = 26/400
Final error = 0.000474644409471
关于python - 我在 Tensorflow 中的 RBF 网络有问题吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45853863/
我想应用 RBF 神经网络来教授我的系统。我有一个带有输入的系统: | 1 2 3 4 5 6 ... 32 | 33 | | 1000 0001 001
我是数据科学领域的新手,我知道如何使用 sklearn 库以及如何自定义 RBF 内核,但我想从头开始实现 SVM-RBF 内核以用于学习目的以及如何在不使用的情况下手动实现拟合和预测sklearn
我正在使用 RBF 内核 matlab 函数。 在几个数据集上,随着我继续增加 sigma 值,支持向量的数量增加并且准确性增加。 而在一个数据集的情况下,当我增加 sigma 值时,支持向量会减少并
我想实现一个 RBFN 并在 StackOverflow 上找到了这段代码。虽然我明白一些代码,但我不明白什么 gamma , kwargs ,以及整个 call功能。 有人可以向我解释一下吗? fr
非常类似于RBF interpolation fails: LinAlgError: singular matrix但我认为问题不同,因为我没有重复的坐标。 玩具示例: import numpy as
我正在尝试寻找以高斯函数作为径向基函数的神经网络代码。我想使用反向传播学习规则。 我拥有所有数据,所以我只需要 RBF 神经网络。谢谢! 最佳答案 Encog 库(C# 和 Java)具有以下功能:
我想问一下 SVM 上的 RBF 内核。 在 sklearn 的文档中:http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR
我正在使用 sklearn.svm.SVC (kernel='rbf') 对图像数据进行分类,效果很好。线性 SVM 通过在两个类之间放置一个超平面来对数据进行分类。在 rbf SVM 的情况下,平面
使用 RBF 进行插值时出现一些错误。这是一维的示例。我认为这与我的 y 值彼此之间的接近程度有关。有什么办法可以解决这个问题吗? import numpy as np from scipy.inte
我有类似这个问题的答案分别是这个问题的答案:RBF interpolation: LinAlgError: singular matrix 但是我想用rbf做概率分布。 到目前为止我的代码: from
当我使用 SVM 的 trainAuto 方法时,我得到 getKernelType() 的值 2 但是当我在我的代码中使用 RBF 时,它训练我的文件并输出 XML 文件。 svm = cv2.ml
当我执行下面的代码时 import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import Rbf x_co
如果给我训练数据集和未标记的数据集,Matlab 的 RBF 核矩阵算法是什么? 最佳答案 这应该是您要查找的内容。它取自 here % With Fast Computation of the RB
我对 svm 分类有点陌生。我正在尝试使用 opencv svm 分类器进行一些人脸识别。输入特征参数是归一化的局部二进制模式。所以所有的值都是从0-1。我首先尝试使用线性核来训练分类器,然后使用训练
我想为我的非线性可分离数据实现 SVM RBF 内核。我将我的内核定义为: def rbf(va, vb): gamma = 0.7 return exp(-gamma * linal
如何在 Neupy 或 Theano 中实现自定义激活函数(通过梯度下降调整均值和方差的 RBF 核)以在 Neupy 中使用。 {快速背景:梯度下降适用于网络中的每个参数。我想创建一个专门的特征空间
from sklearn.model_selection import GridSearchCV from sklearn import svm params_svm = {
我想像这里一样用 rbf 函数绘制一些点以获得点的密度分布: 如果我运行下面的代码,它工作正常: from scipy.interpolate.rbf import Rbf # radial bas
我在 3 维空间中有几个数据点 (x, y, z) 并使用 scipy.interpolate.Rbf 对它们进行插值。这给了我一个很好地代表 3D 对象表面的样条线。我现在想确定几个具有相同的任意
我使用 scipy.interpolate 插值数据集,它给出了热图(z 值作为 x、y 的函数): rbf = scipy.interpolate.Rbf(x, y, z, function='cu
我是一名优秀的程序员,十分优秀!