- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个卷积神经网络,我最近重构它以使用 Tensorflow 的 Estimator API,主要遵循 this tutorial .然而,在训练期间,我添加到 EstimatorSpec 的指标没有显示在 Tensorboard 上,并且似乎没有在 tfdbg 中进行评估,尽管名称范围和指标出现在写入 Tensorboard 的图表中。
model_fn
的相关位如下:
...
predictions = tf.placeholder(tf.float32, [num_classes], name="predictions")
...
with tf.name_scope("metrics"):
predictions_rounded = tf.round(predictions)
accuracy = tf.metrics.accuracy(input_y, predictions_rounded, name='accuracy')
precision = tf.metrics.precision(input_y, predictions_rounded, name='precision')
recall = tf.metrics.recall(input_y, predictions_rounded, name='recall')
if mode == tf.estimator.ModeKeys.PREDICT:
spec = tf.estimator.EstimatorSpec(mode=mode,
predictions=predictions)
elif mode == tf.estimator.ModeKeys.TRAIN:
...
# if we're doing softmax vs sigmoid, we have different metrics
if cross_entropy == CrossEntropyType.SOFTMAX:
metrics = {
'accuracy': accuracy,
'precision': precision,
'recall': recall
}
elif cross_entropy == CrossEntropyType.SIGMOID:
metrics = {
'precision': precision,
'recall': recall
}
else:
raise NotImplementedError("Unrecognized cross entropy function: {}\t Available types are: SOFTMAX, SIGMOID".format(cross_entropy))
spec = tf.estimator.EstimatorSpec(mode=mode,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
else:
raise NotImplementedError('ModeKey provided is not supported: {}'.format(mode))
return spec
有人想知道为什么没有写这些吗?我正在使用 Tensorflow 1.7 和 Python 3.5。我已经尝试通过 tf.summary.scalar
显式添加它们,虽然它们确实以这种方式进入 Tensorboard,但在第一次通过图形后它们永远不会更新。
最佳答案
指标 API 有一个转折点,让我们以 tf.metrics.accuracy
为例(所有 tf.metrics.*
工作相同)。这将返回 2 个值,即 accuracy
指标和一个 upate_op
,这看起来像是您的第一个错误。你应该有这样的东西:
accuracy, update_op = tf.metrics.accuracy(input_y, predictions_rounded, name='accuracy')
accuracy
只是您期望计算出的值,但是请注意,您可能希望计算多次调用 sess.run
的准确性,例如例如,当您计算无法全部放入内存的大型测试集的准确性时。这就是 update_op
的用武之地,它会累积结果,因此当您要求 accuracy
时,它会为您提供一个运行记录。
update_op
没有依赖项,因此您需要在 sess.run
中显式运行它或添加依赖项。例如,您可以将其设置为依赖于成本函数,以便在计算成本函数时计算 update_op
(导致更新精度的运行计数):
with tf.control_dependencies(cost):
tf.group(update_op, other_update_ops, ...)
您可以使用局部变量初始值设定项重置指标的值:
sess.run(tf.local_variables_initializer())
您需要使用 tf.summary.scalar(accuracy)
为 tensorboard 添加准确性,正如您提到的那样(尽管看起来您添加了错误的东西)。
关于python - 带有自定义 Estimator 的 Tensorflow 指标,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50120073/
几个月前,我使用了tf.contrib.learn.DNNRegressor来自 TensorFlow 的 API,我发现它使用起来非常方便。最近几个月我没有跟上TensorFlow的发展。现在我有一
我们正在尝试将旧的训练代码转换为更符合 tf.estimator.Estimator 的代码。在初始代码中,我们针对目标数据集微调原始模型。在使用 variables_to_restore 和 ini
我目前运行的是 TensorFlow 1.9.0。我的自定义估算器是使用 tf.estimator.Estimator 创建的,并且运行时没有出现任何故障。但是,我在 model_dir 下没有找到任
我刚刚用 tensorflow 训练了一个 CNN 来识别太阳黑子。我的模型与 this 几乎相同.问题是我无法在任何地方找到关于如何使用训练阶段生成的检查点进行预测的明确解释。 尝试使用标准恢复方法
我正在尝试使用我自己的数据集和类对在 imagenet 上预训练的 Inception-resnet v2 模型进行迁移学习。我的原始代码库是对 tf.slim 的修改我再也找不到的示例,现在我正在尝
在 train(...) 完成后,如何从 tf.estimator.Estimator 获取最后一个 global_step ?例如,典型的基于估算器的训练例程可能如下设置: n_epochs = 1
一年多来我一直在使用自己的 Estimator/Experiment 之类的代码,但我最终想加入 Dataset+Estimator 的行列。 我想做如下的事情: for _ in range(N):
我正在考虑将我的代码库移动到 tf.estimator.Estimator ,但我找不到如何将它与张量板摘要结合使用的示例。 MWE: import numpy as np import tensor
我的印象是在 tf.estimator.Estimator 实例上调用 evaluate() 不会在多个 GPU 上运行模型,即使分配策略是 MirroredStrategy,配置为至少使用 2 个
我遇到了一些小问题,但我不知道如何处理。 当我使用 tf.estimator.Estimator 时,它会在每个步骤中记录两行,例如: INFO:tensorflow:global_step/sec:
在此tutorial ,他们通过为 tf.nn.softmax 节点命名成功地记录了 softmax 函数。 tf.nn.softmax(logits, name="softmax_tensor")
我发现 tensorflow train_and_evaluate 的工作方式与传统的 tf.estimator train 和 evaluate 相比有点不同。train_and_evaluate
我正在使用 tensorflow 版本 2.0.0-beta1。打电话时 tf.estimator.inputs.pandas_input_fn 它给了我一个错误。 module 'tensorflo
有没有办法在另一个模型 B 中使用经过 tf.estimator 训练的模型 A? 这是情况,假设我有一个训练有素的“模型 A”和 model_a_fn()。“模型 A”获取图像作为输入,并输出一些类
我正在尝试在本地运行对象检测 API。 我相信我已经按照 TensorFlow Object Detection API 中的描述设置了所有内容。但是,当我尝试运行 model_main.py 时,会
请原谅我的编码经验。我正在尝试使用 GridSearch 进行一系列回归。我正在尝试循环整个过程以使过程更快,但我的代码不够好并且不介意提高效率。这是我的代码: classifiers=[Lasso(
我在将纯 Keras 模型转换为不平衡数据集上的 TensorFlow Estimator API 时遇到了一些麻烦。 使用纯 Keras API 时,class_weight 参数在 model.f
当发生上述错误时,我经常使用有关估计器的tensorflow官方教程,而它在google.colab中正常运行。 我使用的环境是win10-64bit&tensorflow-gpu==1.12.0&p
Closed. This question is opinion-based。它当前不接受答案。 想要改善这个问题吗?更新问题,以便editing this post用事实和引用来回答。 已关闭6年。
Closed. This question is opinion-based。它当前不接受答案。 想要改善这个问题吗?更新问题,以便editing this post用事实和引用来回答。 1年前关闭。
我是一名优秀的程序员,十分优秀!