gpt4 book ai didi

python - Tensorflow 条件抛出值错误

转载 作者:太空宇宙 更新时间:2023-11-03 13:13:28 24 4
gpt4 key购买 nike

我正在尝试将条件与 tensorflow 一起使用,但出现错误:

ValueError: Shapes (1,) and () are not compatible

下面是我使用的引发错误的代码。它说错误在条件中

import tensorflow as tf
import numpy as np

X = tf.constant([1, 0])
Y = tf.constant([0, 1])
BOTH = tf.constant([1, 1])
WORKING = tf.constant(1)

def create_mult_func(tf, amount, list):
def f1():
return tf.scalar_mul(amount, list)
return f1

def create_no_op_func(tensor):
def f1():
return tensor
return f1

def stretch(tf, points, dim, amount):
"""points is a 2 by ??? tensor, dim is a 1 by 2 tensor, amount is tensor scalor"""
x_list, y_list = tf.split(0, 2, points)
x_stretch, y_stretch = tf.split(1, 2, dim)
is_stretch_X = tf.equal(x_stretch, WORKING, name="is_stretch_x")
is_stretch_Y = tf.equal(y_stretch, WORKING, name="is_stretch_Y")
x_list_stretched = tf.cond(is_stretch_X,
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
y_list_stretched = tf.cond(is_stretch_Y,
create_mult_func(tf, amount, y_list), create_no_op_func(y_list))
return tf.concat(1, [x_list_stretched, y_list_stretched])

example_points = np.array([[1, 1], [2, 2], [3, 3]], dtype=np.float32)
example_point_list = tf.placeholder(tf.float32)

result = stretch(tf, example_point_list, X, 1)
sess = tf.Session()

with tf.Session() as sess:
result = sess.run(result, feed_dict={example_point_list: example_points})
print(result)

堆栈跟踪:

  File "/path/test2.py", line 36, in <module>
result = stretch(tf, example_point_list, X, 1)
File "/path/test2.py", line 28, in stretch
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
File "/path/tensorflow/python/ops/control_flow_ops.py", line 1142, in cond
p_2, p_1 = switch(pred, pred)
File "/path/tensorflow/python/ops/control_flow_ops.py", line 203, in switch
return gen_control_flow_ops._switch(data, pred, name=name)
File "/path/tensorflow/python/ops/gen_control_flow_ops.py", line 297, in _switch
return _op_def_lib.apply_op("Switch", data=data, pred=pred, name=name)
File "/path/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/path/tensorflow/python/framework/ops.py", line 2156, in create_op
set_shapes_for_outputs(ret)
File "/path/tensorflow/python/framework/ops.py", line 1612, in set_shapes_for_outputs
shapes = shape_func(op)
File "/path/tensorflow/python/ops/control_flow_ops.py", line 2032, in _SwitchShape
unused_pred_shape = op.inputs[1].get_shape().merge_with(tensor_shape.scalar())
File "/path/tensorflow/python/framework/tensor_shape.py", line 554, in merge_with
(self, other))
ValueError: Shapes (1,) and () are not compatible

我尝试将 WORKING 更改为数组而不是标量。

我认为问题在于 tf.equal 返回的是 int32 而不是根据文档它应该返回的 bool

最佳答案

问题出在 tf.cond 的第一个参数中。来自文档 here ,关于 tf.cond 的第一个参数的类型:

pred: A scalar determining whether to return the result of fn1 or fn2.

请注意,它必须是一个标量。您正在使用比较张量和张量的结果,这会为您提供 (1,) tensor不是 标量。您可以使用 tf.reshape 将其转换为标量运算符如下:

t = tf.equal(x_stretch, WORKING, name="is_stretch_x")
x_list_stretched = tf.cond(tf.reshape(t, []),
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))

完整的工作程序:

import tensorflow as tf
import numpy as np

X = tf.constant([1, 0])
Y = tf.constant([0, 1])
BOTH = tf.constant([1, 1])
WORKING = tf.constant(1)

def create_mult_func(tf, amount, list):
def f1():
return tf.scalar_mul(amount, list)
return f1

def create_no_op_func(tensor):
def f1():
return tensor
return f1

def stretch(tf, points, dim, amount):
"""points is a 2 by ??? tensor, dim is a 1 by 2 tensor, amount is tensor scalor"""
x_list, y_list = tf.split(0, 2, points)
x_stretch, y_stretch = tf.split(0, 2, dim)
is_stretch_X = tf.equal(x_stretch, WORKING, name="is_stretch_x")
is_stretch_Y = tf.equal(y_stretch, WORKING, name="is_stretch_Y")
x_list_stretched = tf.cond(tf.reshape(is_stretch_X, []),
create_mult_func(tf, amount, x_list), create_no_op_func(x_list))
y_list_stretched = tf.cond(tf.reshape(is_stretch_Y, []),
create_mult_func(tf, amount, y_list), create_no_op_func(y_list))
return tf.pack([x_list_stretched, y_list_stretched])

example_points = np.array([[1, 1], [2, 2]], dtype=np.float32)
example_point_list = tf.placeholder(tf.float32)

result = stretch(tf, example_point_list, X, 1)
sess = tf.Session()

with tf.Session() as sess:
result = sess.run(result, feed_dict={example_point_list: example_points})
print(result)

关于python - Tensorflow 条件抛出值错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37044006/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com