- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个像这样的 Pandas 数据框:
df = pd.DataFrame({"A": [1, 2, 3, 4, 5, 6], "B": [100, 200, 300, 400, 500,
600]})
如果满足某些条件,我想创建一个具有某些值的新列。问题是:这些是 &
和 |
的多个条件。我知道我可以只用两个条件然后多次调用 df.loc
来做到这一点,但由于我的实际数据集非常庞大,变量可以采用许多不同的值,我想知道它是否可以在一次 df.loc
调用中执行此操作。我之前也尝试过 np.where
,但发现 df.loc
通常更容易,所以如果我能坚持下去就好了。
我试过的代码是
df.loc[(df.A == 1) | (df.A == 2) & (df.B == 600) | (df.B == 200), "C"] =
"1or2and600or200"
这给了我
print(df)
A B C
0 1 100 1or2and600or200
1 2 200 1or2and600or200
2 3 300 NaN
3 4 400 NaN
4 5 500 NaN
5 6 600 NaN
但这不是我想要的,因为 df.loc
可能只考虑前两个条件。因此,在此代码示例中,我希望值 1or2and600or200
仅位于第一行,而不是第二行。这可能吗?
非常感谢。
最佳答案
一切都很好,除了你需要注意额外的括号。
df.loc[((df.A == 1) | (df.A == 2)) & ((df.B == 600) | (df.B == 200)), "C"] = "1or2and600or200"
您还可以继续使用 .isin
以获得@AndrewF 所引用的更清晰简洁的图片
df.loc[df.A.isin([1, 2]) & df.B.isin([600, 200]), 'C'] = "1or2and600or200"
此外,对于您给定的条件,它会出现在第二行,因为它是您在 B
中有 200
的地方
关于python - df.loc 超过 2 个条件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54234786/
努力理解标题中 5 个示例之间的区别。系列与数据框有一些用例吗?什么时候应该使用一个而不是另一个?哪些是等价的? 最佳答案 df[x] — 使用变量 x 索引列。返回 pd.Series df[[x]
在使用Jupyter Notebook时,我必须为问题标题中提到的df.info()、df.head()等单独留出空格. 有没有办法像第二张图片那样把所有这些都放在一个 block 中,并显示所有信息
我想求三列之和,我采取的方法如下: In [14]: a_pd = pd.DataFrame({'a': np.arange(3), 'b': [5, 7,
我想我们大多数人已经使用过这样的东西(至少如果你正在使用 tidyverse): library(tidyverse) example % select(- mpg) 我的问题: 我知道这部分有一
我有一个 DF,里面有大约 20,000 行。我构建了一个 Python 脚本来对这些数据(包括数据透视表)运行大量清理和数学运算。 我想将此 DF 拆分为 3 个独立的 DF,然后根据列值将这 3
我什至不知道如何表达这一点,但在 Python 中有没有一种方法可以引用等号之前的文本,而无需实际再次编写? ** 编辑 - 我在 Jupyter 中使用 python3 我似乎用了半辈子的时间来写作
在 df1 中,每个单元格值都是我想要从 df2 中获取的行的索引。 我想获取 df2 trial_ms 列中行的信息,然后根据获取的 df2 列重命名 df1 中的列。 可重现的 DF: # df1
我想转换此表 0 thg John 3.0 1 thg James 4.0 2 mol NaN 5.0 3 mol NaN NaN 4
我有一个数据框,我想从中提取 val 中的值大于 15 以及 val 不是 NA: df[ !is.na(df$val) & df$val > 15, ] 由于我假设在 R 中经常需要这样的比较,所
鉴于 coming deprecation of df.ix[...] 如何替换这段代码中的 .ix? df_1 = df.ix[:, :datetime.time(16, 50)] d
任何我可以帮助我说出 Pandas 中这两个语句之间的区别-python df.where(df['colname'] == value) 和 df[(df['colname'] == value)]
考虑 df Index A B C 0 20161001 0 24.5 1 20161001 3 26.5 2
所以我需要按“fh_status”列对行进行分组,然后对每个组执行“gini”的最小值、平均值和最大值(将有三个)。我想出了这段代码: m = (df2.groupby(['fh_status']).
我尝试计算不同公司/股票的一些 KPI。我的股票信息位于 df 中,具有以下结构 Ticker Open High Low Ad
我有一个看起来像这样的 df: gene ID Probe ID Chromosome Start Stop 1: H3F3A 539154271
nn_idx_df 包含与 xyz_df 的索引匹配的索引值。如何从 xyz_df 中的 H 列获取值并在 nn_idx_df 中创建新列以匹配 output_df 中所示的结果。我可以解决这个问题,
我目前的 DF 看起来像这样 Combinations Count 1 ('IDLY', 'VADA') 3734 6 ('DOSA', 'IDLY')
我看到了几个与此相关的问题,但我发现这些技巧都不起作用。 我正在尝试根据第二个数据帧的值填充数据帧的所有 NaN 值。第一个 df 很大,第二个 df 将充当某种键。 DF1 Par
我有两个数据帧,df1 和 df2。每个数据帧的唯一标识符是“ID”和“Prop_Number”。我需要将 df1 中的 Num1、2 和 3 列复制到 df2、1_Num 中的相应列...但我不确定
我有以下数据框: 注意:日期是索引 city morning afternoon evening midnight date 2014-05-01 Y
我是一名优秀的程序员,十分优秀!