gpt4 book ai didi

python - 如何加速一个热编码器代码

转载 作者:太空宇宙 更新时间:2023-11-03 12:55:56 25 4
gpt4 key购买 nike

我做了一个简单的函数,当作为输入一个向量时,它将返回一个输出热编码矩阵。

import numpy as np

def ohc(x):
u = list(set(x))
c = len(u)
X = np.zeros((len(x), c))
for idx, val in enumerate(x):
for i in range(c):
if val == u[i]:
X[idx, i] = 1
return X

inputx = np.random.randint(1, 4, 1000000)
ohc(inputx)
Out[2]:
array([[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
...,
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 0., 1., 0.]])

但我想知道是否因为这两个 for 循环有什么方法可以加快它的速度?

     1000006 function calls in 1.102 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.930 0.930 1.102 1.102 <ipython-input-32-fcf6d323f906>:1(ohc)
1 0.000 0.000 1.102 1.102 <string>:1(<module>)
2 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 {numpy.core.multiarray.zeros}
1000000 0.172 0.000 0.172 0.000 {range}

最佳答案

看起来像是 np.unique 的工作

uniq, inv = np.unique(x, return_inverse=True)
result = np.zeros((len(x), len(uniq)), dtype=int)
result[np.arange(len(x)), inv] = 1

针对@Divakar 的基准测试:这是一个信息量更大的比较,确认 dv 在小字母上有轻微的速度优势,它跨越 K=20 并反转在 K=1000 时,pp 具有几倍的优势。这是预期的,因为 pp 利用了 one-hot 的稀疏性。下面,K 是字母表的大小,N 是样本的长度。

import numpy as np
from timeit import timeit

def pp(x):
uniq, inv = np.unique(x, return_inverse=True)
result = np.zeros((len(x), len(uniq)), dtype=int)
result[np.arange(len(x)), inv] = 1

def dv(x):
(x[:,None] == np.unique(x)).astype(int)


for K in (4, 10, 20, 40, 100, 200, 1000):
tpp, tdv = [], []
print('@ K =', K)
for N in (1000, 10000, 100000):
data = np.random.choice(np.random.random(K), N, replace=True)
tdv.append(timeit('f(a)', number=100, globals={'f': dv, 'a': data}))
tpp.append(timeit('f(a)', number=100, globals={'f': pp, 'a': data}))
print('dv:', '{:.6f}, {:.6f}, {:.6f}'.format(*tdv), 'secs for 100 trials @ N = 1000, 10000, 100000')
print('pp:', '{:.6f}, {:.6f}, {:.6f}'.format(*tpp), 'secs for 100 trials @ N = 1000, 10000, 100000')

打印:

@ K = 4
dv: 0.003458, 0.038176, 0.421894 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.004856, 0.052298, 0.603758 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 10
dv: 0.005136, 0.056491, 0.663157 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.005955, 0.054069, 0.719152 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 20
dv: 0.007201, 0.084867, 0.988886 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.007638, 0.084580, 0.891122 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 40
dv: 0.010748, 0.130974, 1.498022 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.009321, 0.103912, 1.080271 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 100
dv: 0.025357, 0.292930, 2.946326 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.011916, 0.147117, 1.641588 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 200
dv: 0.033651, 0.560753, 6.042001 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.022971, 0.221142, 3.580255 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 1000
dv: 0.156715, 2.655647, 37.112166 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.055516, 0.920938, 10.358050 secs for 100 trials @ N = 1000, 10000, 100000

使用 uint8 并允许@Divakar 的方法使用更便宜的 View 转换:

@ K = 4
dv: 0.003092, 0.038149, 0.386140 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.004392, 0.043327, 0.554253 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 10
dv: 0.004604, 0.054215, 0.501708 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.004930, 0.051555, 0.607239 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 20
dv: 0.006421, 0.067397, 0.665465 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.006616, 0.054055, 0.703260 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 40
dv: 0.008857, 0.087155, 0.862316 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.006945, 0.060408, 0.733966 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 100
dv: 0.015660, 0.142464, 1.426929 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.008063, 0.070860, 0.908615 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 200
dv: 0.025631, 0.235712, 2.401750 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.008805, 0.101772, 1.111652 secs for 100 trials @ N = 1000, 10000, 100000
@ K = 1000
dv: 0.069953, 1.024585, 11.313402 secs for 100 trials @ N = 1000, 10000, 100000
pp: 0.011558, 0.182684, 2.201837 secs for 100 trials @ N = 1000, 10000, 100000

关于python - 如何加速一个热编码器代码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42333689/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com