gpt4 book ai didi

python - 如何提取图像的边界(OCT/视网膜扫描图像)

转载 作者:太空宇宙 更新时间:2023-11-03 12:45:28 25 4
gpt4 key购买 nike

我有一个 (OCT) 图像,如下所示(原始)。如您所见,它主要有 2 层。我想生成一个图像(如第 3 张图所示),其中红线表示第 1 层的顶部边界,绿色表示第 2 层最亮的部分。

original

pic with borders

red line:top border of first layer, green line: brightest line in the 2nd layer

我试图简单地对图像进行阈值处理。然后我可以找到如图 2 所示的边缘。但是如何从这些边界产生红/绿线呢?

PS:我正在使用 matlab(或 OpenCV)。但是欢迎使用任何语言/伪代码的任何想法。提前致谢

最佳答案

现在没有太多时间,但您可以从这里开始:

  1. 稍微模糊图像(去除噪点)

    简单的卷积可以用矩阵做几次

    0.0 0.1 0.0
    0.1 0.6 0.1
    0.0 0.1 0.0
  2. 通过y轴进行颜色推导

    沿y导出像素颜色轴...例如,我将其用于输入图像的每个像素:

    pixel(x,y)=pixel(x,y)-pixel(x,y-1)

    注意结果是有符号的,因此您可以通过一些偏差进行归一化或使用 abs value 或 handle as signed values ...在我的示例中,我使用了偏差,因此灰色区域是零推导 ...黑色最负,白色最正

  3. 稍微模糊图像(去除噪点)

  4. 增强动态范围

    只需在图像中找到最小颜色 c0和最大颜色 c1并将所有像素重新缩放到预定义范围 <low,high> .这将使跨不同图像的阈值处理更加稳定...

    pixel(x,y)=low + ((pixel(x,y)-c0)*(high-low)/(c1-c0)

    例如,您可以使用 low=0high=255

  5. 阈值大于阈值的所有像素

生成的图像是这样的:

preview

现在只是:

  1. 分割红色区域
  2. 移除太小的区域
  3. 缩小/重新着色区域以仅保留每个区域的中点 x坐标

    最上面的点是红色,最下面的点是绿色。

这应该会让您非常接近您想要的解决方案。当心模糊和推导会使检测到的位置稍微偏离其实际位置。

另外,如需更多想法,请查看相关的QA:

[Edit1] 我的 C++ 代码

picture pic0,pic1,pic2;     // pic0 is your input image, pic1,pic2 are output images
int x,y;
int tr0=Form1->sb_treshold0->Position; // treshold from scrollbar (=100)
// [prepare image]
pic1=pic0; // copy input image pic0 to output pic1 (upper)
pic1.pixel_format(_pf_s); // convert to grayscale intensity <0,765> (handle as signed numbers)
pic2=pic0; // copy input image pic0 to output pic2 (lower)

pic1.smooth(5); // blur 5 times
pic1.derivey(); // derive colros by y
pic1.smooth(5); // blur 5 times
pic1.enhance_range(); // maximize range

for (x=0;x<pic1.xs;x++) // loop all pixels
for (y=0;y<pic1.ys;y++)
if (pic1.p[y][x].i>=tr0) // if treshold in pic1 condition met
pic2.p[y][x].dd=0x00FF0000; //0x00RRGGBB then recolor pixel in pic2

pic1.pixel_format(_pf_rgba); // convert the derivation signed grayscale to RGBA (as biased grayscale)

// just render actual set treshold
pic2.bmp->Canvas->Brush->Style=bsClear;
pic2.bmp->Canvas->Font->Color=clYellow;
pic2.bmp->Canvas->TextOutA(5,5,AnsiString().sprintf("Treshold: %i",tr0));
pic2.bmp->Canvas->Brush->Style=bsSolid;

代码在底部使用 Borlands VCL 封装的 GDI 位图/ Canvas (对您来说并不重要,只是呈现实际的阈值设置)和我自己的 picture类所以一些成员描述是有序的:

  • xs,ys决议
  • color p[ys][xs]直接像素访问(32 位像素格式,每个 channel 8 位)
  • pf实际选择的图像像素格式请参阅 enum吼叫
  • enc_color/dec_color只需将颜色 channel 打包解包到单独的数组,以便轻松处理多像素格式......所以我不需要为每个像素格式分别编写每个函数
  • clear(DWORD c)用颜色填充图像 c

color只是unionDWORD ddBYTE db[4]int i用于简单的 channel 访问和/或签名值处理。

其中的一些代码块:

union color
{
DWORD dd; WORD dw[2]; byte db[4];
int i; short int ii[2];
color(){}; color(color& a){ *this=a; }; ~color(){}; color* operator = (const color *a) { dd=a->dd; return this; }; /*color* operator = (const color &a) { ...copy... return this; };*/
};
enum _pixel_format_enum
{
_pf_none=0, // undefined
_pf_rgba, // 32 bit RGBA
_pf_s, // 32 bit signed int
_pf_u, // 32 bit unsigned int
_pf_ss, // 2x16 bit signed int
_pf_uu, // 2x16 bit unsigned int
_pixel_format_enum_end
};
//---------------------------------------------------------------------------
void dec_color(int *p,color &c,int _pf)
{
p[0]=0;
p[1]=0;
p[2]=0;
p[3]=0;
if (_pf==_pf_rgba) // 32 bit RGBA
{
p[0]=c.db[0];
p[1]=c.db[1];
p[2]=c.db[2];
p[3]=c.db[3];
}
else if (_pf==_pf_s ) // 32 bit signed int
{
p[0]=c.i;
}
else if (_pf==_pf_u ) // 32 bit unsigned int
{
p[0]=c.dd;
}
else if (_pf==_pf_ss ) // 2x16 bit signed int
{
p[0]=c.ii[0];
p[1]=c.ii[1];
}
else if (_pf==_pf_uu ) // 2x16 bit unsigned int
{
p[0]=c.dw[0];
p[1]=c.dw[1];
}
}
//---------------------------------------------------------------------------
void dec_color(double *p,color &c,int _pf)
{
p[0]=0.0;
p[1]=0.0;
p[2]=0.0;
p[3]=0.0;
if (_pf==_pf_rgba) // 32 bit RGBA
{
p[0]=c.db[0];
p[1]=c.db[1];
p[2]=c.db[2];
p[3]=c.db[3];
}
else if (_pf==_pf_s ) // 32 bit signed int
{
p[0]=c.i;
}
else if (_pf==_pf_u ) // 32 bit unsigned int
{
p[0]=c.dd;
}
else if (_pf==_pf_ss ) // 2x16 bit signed int
{
p[0]=c.ii[0];
p[1]=c.ii[1];
}
else if (_pf==_pf_uu ) // 2x16 bit unsigned int
{
p[0]=c.dw[0];
p[1]=c.dw[1];
}
}
//---------------------------------------------------------------------------
void enc_color(int *p,color &c,int _pf)
{
c.dd=0;
if (_pf==_pf_rgba) // 32 bit RGBA
{
c.db[0]=p[0];
c.db[1]=p[1];
c.db[2]=p[2];
c.db[3]=p[3];
}
else if (_pf==_pf_s ) // 32 bit signed int
{
c.i=p[0];
}
else if (_pf==_pf_u ) // 32 bit unsigned int
{
c.dd=p[0];
}
else if (_pf==_pf_ss ) // 2x16 bit signed int
{
c.ii[0]=p[0];
c.ii[1]=p[1];
}
else if (_pf==_pf_uu ) // 2x16 bit unsigned int
{
c.dw[0]=p[0];
c.dw[1]=p[1];
}
}
//---------------------------------------------------------------------------
void enc_color(double *p,color &c,int _pf)
{
c.dd=0;
if (_pf==_pf_rgba) // 32 bit RGBA
{
c.db[0]=p[0];
c.db[1]=p[1];
c.db[2]=p[2];
c.db[3]=p[3];
}
else if (_pf==_pf_s ) // 32 bit signed int
{
c.i=p[0];
}
else if (_pf==_pf_u ) // 32 bit unsigned int
{
c.dd=p[0];
}
else if (_pf==_pf_ss ) // 2x16 bit signed int
{
c.ii[0]=p[0];
c.ii[1]=p[1];
}
else if (_pf==_pf_uu ) // 2x16 bit unsigned int
{
c.dw[0]=p[0];
c.dw[1]=p[1];
}
}
//---------------------------------------------------------------------------
void picture::smooth(int n)
{
color *q0,*q1;
int x,y,i,c0[4],c1[4],c2[4];
bool _signed;
if ((xs<2)||(ys<2)) return;
for (;n>0;n--)
{
#define loop_beg for (y=0;y<ys-1;y++){ q0=p[y]; q1=p[y+1]; for (x=0;x<xs-1;x++) { dec_color(c0,q0[x],pf); dec_color(c1,q0[x+1],pf); dec_color(c2,q1[x],pf);
#define loop_end enc_color(c0,q0[x ],pf); }}
if (pf==_pf_rgba) loop_beg for (i=0;i<4;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])>>2; clamp_u8(c0[i]); } loop_end
if (pf==_pf_s ) loop_beg { c0[0]=(c0[0]+c0[0]+c1[0]+c2[0])/ 4; clamp_s32(c0[0]); } loop_end
if (pf==_pf_u ) loop_beg { c0[0]=(c0[0]+c0[0]+c1[0]+c2[0])>>2; clamp_u32(c0[0]); } loop_end
if (pf==_pf_ss ) loop_beg for (i=0;i<2;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])/ 4; clamp_s16(c0[i]); } loop_end
if (pf==_pf_uu ) loop_beg for (i=0;i<2;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])>>2; clamp_u16(c0[i]); } loop_end
#undef loop_beg
#define loop_beg for (y=ys-1;y>0;y--){ q0=p[y]; q1=p[y-1]; for (x=xs-1;x>0;x--) { dec_color(c0,q0[x],pf); dec_color(c1,q0[x-1],pf); dec_color(c2,q1[x],pf);
if (pf==_pf_rgba) loop_beg for (i=0;i<4;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])>>2; clamp_u8(c0[i]); } loop_end
if (pf==_pf_s ) loop_beg { c0[0]=(c0[0]+c0[0]+c1[0]+c2[0])/ 4; clamp_s32(c0[0]); } loop_end
if (pf==_pf_u ) loop_beg { c0[0]=(c0[0]+c0[0]+c1[0]+c2[0])>>2; clamp_u32(c0[0]); } loop_end
if (pf==_pf_ss ) loop_beg for (i=0;i<2;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])/ 4; clamp_s16(c0[i]); } loop_end
if (pf==_pf_uu ) loop_beg for (i=0;i<2;i++) { c0[i]=(c0[i]+c0[i]+c1[i]+c2[i])>>2; clamp_u16(c0[i]); } loop_end
#undef loop_beg
#undef loop_end
}
}
//---------------------------------------------------------------------------
void picture::enhance_range()
{
int i,x,y,a0[4],min[4],max,n,c0,c1,q,c;
if (xs<1) return;
if (ys<1) return;

n=0; // dimensions to interpolate
if (pf==_pf_s ) { n=1; c0=0; c1=127*3; }
if (pf==_pf_u ) { n=1; c0=0; c1=255*3; }
if (pf==_pf_ss ) { n=2; c0=0; c1=32767; }
if (pf==_pf_uu ) { n=2; c0=0; c1=65535; }
if (pf==_pf_rgba) { n=4; c0=0; c1= 255; }

// find min,max
dec_color(a0,p[0][0],pf);
for (i=0;i<n;i++) min[i]=a0[i]; max=0;
for (y=0;y<ys;y++)
for (x=0;x<xs;x++)
{
dec_color(a0,p[y][x],pf);
for (q=0,i=0;i<n;i++)
{
c=a0[i]; if (c<0) c=-c;
if (min[i]>c) min[i]=c;
if (max<c) max=c;
}
}
// change dynamic range to max
for (y=0;y<ys;y++)
for (x=0;x<xs;x++)
{
dec_color(a0,p[y][x],pf);
for (i=0;i<n;i++) a0[i]=c0+(((a0[i]-min[i])*(c1-c0))/(max-min[i]+1));
// for (i=0;i<n;i++) if (a0[i]<c0) a0[i]=c0; // clamp if needed
// for (i=0;i<n;i++) if (a0[i]>c1) a0[i]=c1; // clamp if needed
enc_color(a0,p[y][x],pf);
}
}
//---------------------------------------------------------------------------
void picture::derivey()
{
int i,x,y,a0[4],a1[4];
if (ys<2) return;
for (y=0;y<ys-1;y++)
for (x=0;x<xs;x++)
{
dec_color(a0,p[y ][x],pf);
dec_color(a1,p[y+1][x],pf);
for (i=0;i<4;i++) a0[i]=a1[i]-a0[i];
enc_color(a0,p[y][x],pf);
}
for (x=0;x<xs;x++) p[ys-1][x]=p[ys-2][x];
}
//---------------------------------------------------------------------------

我知道它有很多代码……方程式就是您所需要的,但您自己想要这个:)。希望我没有忘记复制一些东西。

关于python - 如何提取图像的边界(OCT/视网膜扫描图像),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37942697/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com