gpt4 book ai didi

python - 使用mahotas和opencv基于Zernike矩的图像重建

转载 作者:太空宇宙 更新时间:2023-11-03 12:38:42 26 4
gpt4 key购买 nike

我听说 mahotas 关注 this教程,希望能在 python 中找到 Zernike 多项式的良好实现。再简单不过了。但是,我需要比较原始图像和从 Zernike 矩重建的图像之间的欧几里德差异。我 asked mahotas 的作者是否可以将重建功能添加到他的库中,但他没有时间构建它。

如何使用 mahotas 提供的 Zernike 矩在 OpenCV 中重建图像?

最佳答案

基于code那个 fireant 在他的回答中提到我开发了以下用于重建的代码。我还找到了研究论文 [ A. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike moments” ] 和 [ S.-K. Hwang and W.-Y. Kim, “A novel approach to the fast computation of Zernike moments” ] 非常有用。

_slow_zernike_poly 函数构造二维 Zernike 基函数。在 zernike_reconstruct 函数中,我们将图像投影到 _slow_zernike_poly 返回的基函数上并计算矩。然后我们使用重构公式。

下面是使用此代码完成的示例重建:

输入图片

input

input-jet

使用12阶重建图像的实部

reconstruct-order-12

'''
Copyright (c) 2015
Dhanushka Dangampola <dhanushkald@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
'''

import numpy as np
from math import atan2
from numpy import cos, sin, conjugate, sqrt

def _slow_zernike_poly(Y,X,n,l):
def _polar(r,theta):
x = r * cos(theta)
y = r * sin(theta)
return 1.*x+1.j*y

def _factorial(n):
if n == 0: return 1.
return n * _factorial(n - 1)
y,x = Y[0],X[0]
vxy = np.zeros(Y.size, dtype=complex)
index = 0
for x,y in zip(X,Y):
Vnl = 0.
for m in range( int( (n-l)//2 ) + 1 ):
Vnl += (-1.)**m * _factorial(n-m) / \
( _factorial(m) * _factorial((n - 2*m + l) // 2) * _factorial((n - 2*m - l) // 2) ) * \
( sqrt(x*x + y*y)**(n - 2*m) * _polar(1.0, l*atan2(y,x)) )
vxy[index] = Vnl
index = index + 1

return vxy

def zernike_reconstruct(img, radius, D, cof):

idx = np.ones(img.shape)

cofy,cofx = cof
cofy = float(cofy)
cofx = float(cofx)
radius = float(radius)

Y,X = np.where(idx > 0)
P = img[Y,X].ravel()
Yn = ( (Y -cofy)/radius).ravel()
Xn = ( (X -cofx)/radius).ravel()

k = (np.sqrt(Xn**2 + Yn**2) <= 1.)
frac_center = np.array(P[k], np.double)
Yn = Yn[k]
Xn = Xn[k]
frac_center = frac_center.ravel()

# in the discrete case, the normalization factor is not pi but the number of pixels within the unit disk
npix = float(frac_center.size)

reconstr = np.zeros(img.size, dtype=complex)
accum = np.zeros(Yn.size, dtype=complex)

for n in range(D+1):
for l in range(n+1):
if (n-l)%2 == 0:
# get the zernike polynomial
vxy = _slow_zernike_poly(Yn, Xn, float(n), float(l))
# project the image onto the polynomial and calculate the moment
a = sum(frac_center * conjugate(vxy)) * (n + 1)/npix
# reconstruct
accum += a * vxy
reconstr[k] = accum
return reconstr

if __name__ == '__main__':

import cv2
import pylab as pl
from matplotlib import cm

D = 12

img = cv2.imread('fl.bmp', 0)

rows, cols = img.shape
radius = cols//2 if rows > cols else rows//2

reconst = zernike_reconstruct(img, radius, D, (rows/2., cols/2.))

reconst = reconst.reshape(img.shape)

pl.figure(1)
pl.imshow(img, cmap=cm.jet, origin = 'upper')
pl.figure(2)
pl.imshow(reconst.real, cmap=cm.jet, origin = 'upper')

关于python - 使用mahotas和opencv基于Zernike矩的图像重建,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33193841/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com