- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用 numpy 计算对称方形数组的特征值和特征向量。我的数组是:
L = [[ 2. -1. -1. 0. 0. 0.]
[-1. 3. 0. -1. 0. -1.]
[-1. 0. 2. -1. 0. 0.]
[ 0. -1. -1. 3. -1. 0.]
[ 0. 0. 0. -1. 2. -1.]
[ 0. -1. 0. 0. -1. 2.]]
执行 numpy.linalg.eig(L)
的结果如下所示
特征值:
[ 5.00000000e+00,
3.96872205e-16,
1.00000000e+00,
2.00000000e+00,
3.00000000e+00,
3.00000000e+00 ]
特征向量:
[[ -2.88675135e-01 4.08248290e-01 -5.00000000e-01 4.08248290e-01 -4.36632863e-01 4.44614891e-01]
[ 5.77350269e-01 4.08248290e-01 -3.34129212e-16 4.08248290e-01 -1.08813217e-01 -5.41271705e-01]
[ 2.88675135e-01 4.08248290e-01 -5.00000000e-01 4.08248290e-01 5.45446080e-01 9.66568140e-02]
[ -5.77350269e-01 4.08248290e-01 1.06732810e-16 4.08248290e-01 -1.08813217e-01 -5.41271705e-01]
[ 2.88675135e-01 4.08248290e-01 5.00000000e-01 4.08248290e-01 -4.36632863e-01 4.44614891e-01]
[ -2.88675135e-01 4.08248290e-01 5.00000000e-01 -4.08248290e-01 5.45446080e-01 9.66568140e-02]]
结果接近(如果归一化)您在 analytically 时得到的结果计算它们,但似乎在特征值和特征向量中引入了一些错误。有什么方法可以使用 numpy 绕过这些错误吗?
这些错误从何而来? numpy 使用什么算法?
最佳答案
如果你想要解析推导的精度,你需要使用symbolic computation ,这是 Wolfram Alpha、Mathematica 和相关系统使用的。在 Python 中,您可能需要查看 SymPy ,例如。
numerical computation嵌入到您正在使用的 NumPy 包中的那个本质上会受到 floating point numerical representations 的小错误和变迁的影响。 .这种误差和近似值在数值计算中是不可避免的。
这是一个例子:
from sympy import Matrix, pretty
L = Matrix([[ 2, -1, -1, 0, 0, 0,],
[-1, 3, 0, -1, 0, -1,],
[-1, 0, 2, -1, 0, 0,],
[ 0, -1, -1, 3, -1, 0,],
[ 0, 0, 0, -1, 2, -1,],
[ 0, -1, 0, 0, -1, 2,]])
print "eigenvalues:"
print pretty(L.eigenvals())
print
print "eigenvectors:"
print pretty(L.eigenvects(), num_columns=132)
产量:
eigenvalues:
{0: 1, 1: 1, 2: 1, 3: 2, 5: 1}
eigenvectors:
⎡⎛0, 1, ⎡⎡1⎤⎤⎞, ⎛1, 1, ⎡⎡-1⎤⎤⎞, ⎛2, 1, ⎡⎡1 ⎤⎤⎞, ⎛3, 2, ⎡⎡1 ⎤, ⎡0 ⎤⎤⎞, ⎛5, 1, ⎡⎡1 ⎤⎤⎞⎤
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢0 ⎥⎥⎟ ⎜ ⎢⎢1 ⎥⎥⎟ ⎜ ⎢⎢-1⎥ ⎢-1⎥⎥⎟ ⎜ ⎢⎢-2⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟ ⎜ ⎢⎢0 ⎥ ⎢1 ⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢0 ⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟ ⎜ ⎢⎢-1⎥ ⎢-1⎥⎥⎟ ⎜ ⎢⎢2 ⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥
⎢⎜ ⎢⎢1⎥⎥⎟ ⎜ ⎢⎢1 ⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟ ⎜ ⎢⎢1 ⎥ ⎢0 ⎥⎥⎟ ⎜ ⎢⎢-1⎥⎥⎟⎥
⎢⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥
⎣⎝ ⎣⎣1⎦⎦⎠ ⎝ ⎣⎣1 ⎦⎦⎠ ⎝ ⎣⎣1 ⎦⎦⎠ ⎝ ⎣⎣0 ⎦ ⎣1 ⎦⎦⎠ ⎝ ⎣⎣1 ⎦⎦⎠⎦
虽然 ASCII pretty-print 正在努力工作以提供甚至准好看的输出,但您可以看到您正在获得符号计算的精确输出。如果您使用 IPython 并将其设置为显示 LaTeX 输出,您将 get a nicer display .
关于python - 如何计算 numpy 特征值和特征向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28727717/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!