- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
"DF","00000000@11111.COM","FLTINT1000130394756","26JUL2010","B2C","6799.2"
"Rail","00000.POO@GMAIL.COM","NR251764697478","24JUN2011","B2C","2025"
"DF","0000650000@YAHOO.COM","NF2513521438550","01JAN2013","B2C","6792"
"Bus","00009.GAURAV@GMAIL.COM","NU27012932319739","26JAN2013","B2C","800"
"Rail","0000.ANU@GMAIL.COM","NR251764697526","24JUN2011","B2C","595"
"Rail","0000MANNU@GMAIL.COM","NR251277005737","29OCT2011","B2C","957"
"Rail","0000PRANNOY0000@GMAIL.COM","NR251297862893","21NOV2011","B2C","212"
"DF","0000PRANNOY0000@YAHOO.CO.IN","NF251327485543","26JUN2011","B2C","17080"
"Rail","0000RAHUL@GMAIL.COM","NR2512012069809","25OCT2012","B2C","5731"
"DF","0000SS0@GMAIL.COM","NF251355775967","10MAY2011","B2C","2000"
"DF","0001HARISH@GMAIL.COM","NF251352240086","22DEC2010","B2C","4006"
"DF","0001HARISH@GMAIL.COM","NF251742087846","12DEC2010","B2C","1000"
"DF","0001HARISH@GMAIL.COM","NF252022031180","09DEC2010","B2C","3439"
"Rail","000AYUSH@GMAIL.COM","NR2151120122283","25JAN2013","B2C","136"
"Rail","000AYUSH@GMAIL.COM","NR2151213260036","28NOV2012","B2C","41"
"Rail","000AYUSH@GMAIL.COM","NR2151313264432","29NOV2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2151413266728","29NOV2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2512912359037","08DEC2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2517612385569","12DEC2012","B2C","96"
以上是示例数据。数据按照邮箱地址排序,文件很大,1.5Gb左右
我想在另一个类似这样的 csv 文件中输出
"DF","00000000@11111.COM","FLTINT1000130394756","26JUL2010","B2C","6799.2",1,0 days
"Rail","00000.POO@GMAIL.COM","NR251764697478","24JUN2011","B2C","2025",1,0 days
"DF","0000650000@YAHOO.COM","NF2513521438550","01JAN2013","B2C","6792",1,0 days
"Bus","00009.GAURAV@GMAIL.COM","NU27012932319739","26JAN2013","B2C","800",1,0 days
"Rail","0000.ANU@GMAIL.COM","NR251764697526","24JUN2011","B2C","595",1,0 days
"Rail","0000MANNU@GMAIL.COM","NR251277005737","29OCT2011","B2C","957",1,0 days
"Rail","0000PRANNOY0000@GMAIL.COM","NR251297862893","21NOV2011","B2C","212",1,0 days
"DF","0000PRANNOY0000@YAHOO.CO.IN","NF251327485543","26JUN2011","B2C","17080",1,0 days
"Rail","0000RAHUL@GMAIL.COM","NR2512012069809","25OCT2012","B2C","5731",1,0 days
"DF","0000SS0@GMAIL.COM","NF251355775967","10MAY2011","B2C","2000",1,0 days
"DF","0001HARISH@GMAIL.COM","NF251352240086","09DEC2010","B2C","4006",1,0 days
"DF","0001HARISH@GMAIL.COM","NF251742087846","12DEC2010","B2C","1000",2,3 days
"DF","0001HARISH@GMAIL.COM","NF252022031180","22DEC2010","B2C","3439",3,10 days
"Rail","000AYUSH@GMAIL.COM","NR2151213260036","28NOV2012","B2C","41",1,0 days
"Rail","000AYUSH@GMAIL.COM","NR2151313264432","29NOV2012","B2C","96",2,1 days
"Rail","000AYUSH@GMAIL.COM","NR2151413266728","29NOV2012","B2C","96",3,0 days
"Rail","000AYUSH@GMAIL.COM","NR2512912359037","08DEC2012","B2C","96",4,9 days
"Rail","000AYUSH@GMAIL.COM","NR2512912359037","08DEC2012","B2C","96",5,0 days
"Rail","000AYUSH@GMAIL.COM","NR2517612385569","12DEC2012","B2C","96",6,4 days
"Rail","000AYUSH@GMAIL.COM","NR2517612385569","12DEC2012","B2C","96",7,0 days
"Rail","000AYUSH@GMAIL.COM","NR2151120122283","25JAN2013","B2C","136",8,44 days
"Rail","000AYUSH@GMAIL.COM","NR2151120122283","25JAN2013","B2C","136",9,0 days
即如果条目第一次出现我需要附加 1 如果它第二次出现我需要附加 2 同样我的意思是我需要计算文件中电子邮件地址的出现次数以及电子邮件是否存在两次或更多次我想要日期之间的差异并记住日期未排序所以我们也必须根据特定的电子邮件地址对它们进行排序我正在寻找使用 numpy 或 pandas 库或任何其他库的 python 解决方案处理这种类型的巨大数据而不会出现超出限制的内存异常我有双核处理器和 centos 6.3 并且有 4GB 的 ram
最佳答案
确保你有 0.11,阅读这些文档:http://pandas.pydata.org/pandas-docs/dev/io.html#hdf5-pytables ,以及这些食谱:http://pandas.pydata.org/pandas-docs/dev/cookbook.html#hdfstore (特别是“合并数百万行”
这是一个似乎有效的解决方案。这是工作流程:
本质上,我们是从表中取出一个 block ,然后与文件其他部分的 block 组合。 combiner 函数不会减少,而是计算该 block 中所有元素之间的函数(以天为单位的差异),同时消除重复项,并在每次循环后获取最新数据。有点像递归归约。
这应该是O(num_of_chunks**2)内存和计算时间在你的情况下,chunksize 可以是 1m(或更多)
processing [0] [datastore.h5]
processing [1] [datastore_0.h5]
count date diff email
4 1 2011-06-24 00:00:00 0 0000.ANU@GMAIL.COM
1 1 2011-06-24 00:00:00 0 00000.POO@GMAIL.COM
0 1 2010-07-26 00:00:00 0 00000000@11111.COM
2 1 2013-01-01 00:00:00 0 0000650000@YAHOO.COM
3 1 2013-01-26 00:00:00 0 00009.GAURAV@GMAIL.COM
5 1 2011-10-29 00:00:00 0 0000MANNU@GMAIL.COM
6 1 2011-11-21 00:00:00 0 0000PRANNOY0000@GMAIL.COM
7 1 2011-06-26 00:00:00 0 0000PRANNOY0000@YAHOO.CO.IN
8 1 2012-10-25 00:00:00 0 0000RAHUL@GMAIL.COM
9 1 2011-05-10 00:00:00 0 0000SS0@GMAIL.COM
12 1 2010-12-09 00:00:00 0 0001HARISH@GMAIL.COM
11 2 2010-12-12 00:00:00 3 0001HARISH@GMAIL.COM
10 3 2010-12-22 00:00:00 13 0001HARISH@GMAIL.COM
14 1 2012-11-28 00:00:00 0 000AYUSH@GMAIL.COM
15 2 2012-11-29 00:00:00 1 000AYUSH@GMAIL.COM
17 3 2012-12-08 00:00:00 10 000AYUSH@GMAIL.COM
18 4 2012-12-12 00:00:00 14 000AYUSH@GMAIL.COM
13 5 2013-01-25 00:00:00 58 000AYUSH@GMAIL.COM
import pandas as pd
import StringIO
import numpy as np
from time import strptime
from datetime import datetime
# your data
data = """
"DF","00000000@11111.COM","FLTINT1000130394756","26JUL2010","B2C","6799.2"
"Rail","00000.POO@GMAIL.COM","NR251764697478","24JUN2011","B2C","2025"
"DF","0000650000@YAHOO.COM","NF2513521438550","01JAN2013","B2C","6792"
"Bus","00009.GAURAV@GMAIL.COM","NU27012932319739","26JAN2013","B2C","800"
"Rail","0000.ANU@GMAIL.COM","NR251764697526","24JUN2011","B2C","595"
"Rail","0000MANNU@GMAIL.COM","NR251277005737","29OCT2011","B2C","957"
"Rail","0000PRANNOY0000@GMAIL.COM","NR251297862893","21NOV2011","B2C","212"
"DF","0000PRANNOY0000@YAHOO.CO.IN","NF251327485543","26JUN2011","B2C","17080"
"Rail","0000RAHUL@GMAIL.COM","NR2512012069809","25OCT2012","B2C","5731"
"DF","0000SS0@GMAIL.COM","NF251355775967","10MAY2011","B2C","2000"
"DF","0001HARISH@GMAIL.COM","NF251352240086","22DEC2010","B2C","4006"
"DF","0001HARISH@GMAIL.COM","NF251742087846","12DEC2010","B2C","1000"
"DF","0001HARISH@GMAIL.COM","NF252022031180","09DEC2010","B2C","3439"
"Rail","000AYUSH@GMAIL.COM","NR2151120122283","25JAN2013","B2C","136"
"Rail","000AYUSH@GMAIL.COM","NR2151213260036","28NOV2012","B2C","41"
"Rail","000AYUSH@GMAIL.COM","NR2151313264432","29NOV2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2151413266728","29NOV2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2512912359037","08DEC2012","B2C","96"
"Rail","000AYUSH@GMAIL.COM","NR2517612385569","12DEC2012","B2C","96"
"""
# read in and create the store
data_store_file = 'datastore.h5'
store = pd.HDFStore(data_store_file,'w')
def dp(x, **kwargs):
return [ datetime(*strptime(v,'%d%b%Y')[0:3]) for v in x ]
chunksize=5
reader = pd.read_csv(StringIO.StringIO(data),names=['x1','email','x2','date','x3','x4'],
header=0,usecols=['email','date'],parse_dates=['date'],
date_parser=dp, chunksize=chunksize)
for i, chunk in enumerate(reader):
chunk['indexer'] = chunk.index + i*chunksize
# create the global index, and keep it in the frame too
df = chunk.set_index('indexer')
# need to set a minimum size for the email column
store.append('data',df,min_itemsize={'email' : 100})
store.close()
# define the combiner function
def combiner(x):
# given a group of emails (the same), return a combination
# with the new data
# sort by the date
y = x.sort('date')
# calc the diff in days (an integer)
y['diff'] = (y['date']-y['date'].iloc[0]).apply(lambda d: float(d.item().days))
y['count'] = pd.Series(range(1,len(y)+1),index=y.index,dtype='float64')
return y
# reduce the store (and create a new one by chunks)
in_store_file = data_store_file
in_store1 = pd.HDFStore(in_store_file)
# iter on the store 1
for chunki, df1 in enumerate(in_store1.select('data',chunksize=2*chunksize)):
print "processing [%s] [%s]" % (chunki,in_store_file)
out_store_file = 'datastore_%s.h5' % chunki
out_store = pd.HDFStore(out_store_file,'w')
# iter on store 2
in_store2 = pd.HDFStore(in_store_file)
for df2 in in_store2.select('data',chunksize=chunksize):
# concat & drop dups
df = pd.concat([df1,df2]).drop_duplicates(['email','date'])
# group and combine
result = df.groupby('email').apply(combiner)
# remove the mi (that we created in the groupby)
result = result.reset_index('email',drop=True)
# only store those rows which are in df2!
result = result.reindex(index=df2.index).dropna()
# store to the out_store
out_store.append('data',result,min_itemsize={'email' : 100})
in_store2.close()
out_store.close()
in_store_file = out_store_file
in_store1.close()
# show the reduced store
print pd.read_hdf(out_store_file,'data').sort(['email','diff'])
关于python - 需要在 python 中比较 1.5GB 左右的非常大的文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16110252/
我正在尝试用 C 语言编写一个使用 gstreamer 的 GTK+ 应用程序。 GTK+ 需要 gtk_main() 来执行。 gstreamer 需要 g_main_loop_run() 来执行。
我已经使用 apt-get 安装了 opencv。我得到了以下版本的opencv2,它工作正常: rover@rover_pi:/usr/lib/arm-linux-gnueabihf $ pytho
我有一个看起来像这样的 View 层次结构(基于其他答案和 Apple 的使用 UIScrollView 的高级 AutoLayout 指南): ScrollView 所需的2 个步骤是: 为 Scr
我尝试安装 udev。 udev 在 ./configure 期间给我一个错误 --exists: command not found configure: error: pkg-config and
我正在使用 SQLite 3。我有一个表,forums,有 150 行,还有一个表,posts,有大约 440 万行。每个帖子都属于一个论坛。 我想从每个论坛中选择最新帖子的时间戳。如果我使用 SEL
使用 go 和以下包: github.com/julienschmidt/httprouter github.com/shwoodard/jsonapi gopkg.in/mgo.v2/bson
The database仅包含 2 个表: 钱包(100 万行) 事务(1500 万行) CockroachDB 19.2.6 在 3 台 Ubuntu 机器上运行 每个 2vCPU 每个 8GB R
我很难理解为什么在下面的代码中直接调用 std::swap() 会导致编译错误,而使用 std::iter_swap 编译却没有任何错误. 来自 iter_swap() versus swap() -
我有一个非常简单的 SELECT *用 WHERE NOT EXISTS 查询条款。 SELECT * FROM "BMAN_TP3"."TT_SPLDR_55E63A28_59358" SELECT
我试图按部分组织我的 .css 文件,我需要从任何文件访问文件组中的任何类。在 Less 中,我可以毫无问题地创建一个包含所有文件导入的主文件,并且每个文件都导入主文件,但在 Sass 中,我收到一个
Microsoft.AspNet.SignalR.Redis 和 StackExchange.Redis.Extensions.Core 在同一个项目中使用。前者需要StackExchange.Red
这个问题在这里已经有了答案: Updating from Rails 4.0 to 4.1 gives sass-rails railties version conflicts (4 个答案) 关
我们有一些使用 Azure DevOps 发布管道部署到的现场服务器。我们已经使用这些发布管道几个月了,没有出现任何问题。今天,我们在下载该项目的工件时开始出现身份验证错误。 部署组中的节点显示在线,
Tip: instead of creating indexes here, run queries in your code – if you're missing any indexes, you
你能解释一下 Elm 下一个声明中的意思吗? (=>) = (,) 我在 Elm architecture tutorial 的例子中找到了它 最佳答案 这是中缀符号。实际上,这定义了一个函数 (=>
我需要一个 .NET 程序集查看器,它可以显示低级详细信息,例如元数据表内容等。 最佳答案 ildasm 是 IL 反汇编程序,具有低级托管元数据 token 信息。安装 Visual Studio
我有两个列表要在 Excel 中进行比较。这是一个很长的列表,我需要一个 excel 函数或 vba 代码来执行此操作。我已经没有想法了,因此转向你: **Old List** A
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想要改善这个问题吗?更新问题,以便将其作为on-topi
我正在学习 xml 和 xml 处理。我无法很好地理解命名空间的存在。 我了解到命名空间帮助我们在 xml 中分离相同命名的元素。我们不能通过具有相同名称的属性来区分元素吗?为什么命名空间很重要或需要
我搜索了 Azure 文档、各种社区论坛和 google,但没有找到关于需要在公司防火墙上打开哪些端口以允许 Azure 所有组件(blob、sql、compute、bus、publish)的简洁声明
我是一名优秀的程序员,十分优秀!