gpt4 book ai didi

python - 属性错误 : module '_Box2D' has no attribute 'RAND_LIMIT_swigconstant'

转载 作者:太空宇宙 更新时间:2023-11-03 12:14:06 53 4
gpt4 key购买 nike

我正在尝试在加固上运行 lunar_lander学习了,但是当我运行它的时候,它发生了错误。加上我的电脑是osx系统。

这是月球着陆器的代码:

import numpy as np
import gym
import csv

from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam

from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy, EpsGreedyQPolicy
from rl.memory import SequentialMemory

import io
import sys
import csv

# Path environment changed to make things work properly
# export DYLD_FALLBACK_LIBRARY_PATH=$DYLD_FALLBACK_LIBRARY_PATH:/usr/lib


# Get the environment and extract the number of actions.
ENV_NAME = 'LunarLander-v2'
env = gym.make(ENV_NAME)
np.random.seed(123)
env.seed(123)
nb_actions = env.action_space.n

# Next, we build a very simple model.
model = Sequential()
model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
#print(model.summary())

# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
# even the metrics!
memory = SequentialMemory(limit=300000, window_length=1)
policy = EpsGreedyQPolicy()
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=10,
target_model_update=1e-2, policy=policy)
dqn.compile(Adam(lr=1e-3), metrics=['mae'])

# After training is done, we save the final weights.
dqn.load_weights('dqn_{}_weights.h5f'.format(ENV_NAME))

# Redirect stdout to capture test results
old_stdout = sys.stdout
sys.stdout = mystdout = io.StringIO()

# Evaluate our algorithm for a few episodes.
dqn.test(env, nb_episodes=200, visualize=False)

# Reset stdout
sys.stdout = old_stdout

results_text = mystdout.getvalue()

# Print results text
print("results")
print(results_text)

# Extact a rewards list from the results
total_rewards = list()
for idx, line in enumerate(results_text.split('\n')):
if idx > 0 and len(line) > 1:
reward = float(line.split(':')[2].split(',')[0].strip())
total_rewards.append(reward)

# Print rewards and average
print("total rewards", total_rewards)
print("average total reward", np.mean(total_rewards))

# Write total rewards to file
f = open("lunarlander_rl_rewards.csv",'w')
wr = csv.writer(f)
for r in total_rewards:
wr.writerow([r,])
f.close()

这里是错误:

Traceback (most recent call last):
File "/s/user/Document/Semester2/Advanced Machine Learning/Lab/Lab6/lunar_lander_ml_states_player.py", line 23, in <module>
env = gym.make(ENV_NAME)
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/registration.py", line 167, in make
return registry.make(id)
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/registration.py", line 119, in make
env = spec.make()
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/registration.py", line 85, in make
cls = load(self._entry_point)
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/registration.py", line 14, in load
result = entry_point.load(False)
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/pkg_resources/__init__.py", line 2405, in load
return self.resolve()
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/pkg_resources/__init__.py", line 2411, in resolve
module = __import__(self.module_name, fromlist=['__name__'], level=0)
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/box2d/__init__.py", line 1, in <module>
from gym.envs.box2d.lunar_lander import LunarLander
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/gym/envs/box2d/lunar_lander.py", line 4, in <module>
import Box2D
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/Box2D/__init__.py", line 20, in <module>
from .Box2D import *
File "/s/user/anaconda/envs/untitled/lib/python3.6/site-packages/Box2D/Box2D.py", line 435, in <module>
_Box2D.RAND_LIMIT_swigconstant(_Box2D)
AttributeError: module '_Box2D' has no attribute 'RAND_LIMIT_swigconstant'

我尝试按照 https://github.com/pybox2d/pybox2d/blob/master/INSTALL.md 的指南重新安装 Box2d但它仍然不起作用,有人可以帮助我吗?

最佳答案

试试这个'pip3 install box2d box2d-kengz'

关于python - 属性错误 : module '_Box2D' has no attribute 'RAND_LIMIT_swigconstant' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50037674/

53 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com