gpt4 book ai didi

python - 递归计算矩阵 (nxn) 的行列式

转载 作者:太空宇宙 更新时间:2023-11-03 12:11:13 25 4
gpt4 key购买 nike

我将要编写一些代码来计算方阵 (nxn) 的行列式,使用拉普拉斯算法(意思是递归算法),如 Wikipedia's Laplace Expansion 所写.

我已经有了Matrix类,其中包括initsetitemgetitemrepr 以及计算行列式所需的所有东西(包括 minor(i,j))。

所以我尝试了下面的代码:

def determinant(self,i=0)  # i can be any of the matrix's rows
assert isinstance(self,Matrix)
n,m = self.dim() # Q.dim() returns the size of the matrix Q
assert n == m
if (n,m) == (1,1):
return self[0,0]
det = 0
for j in range(n):
det += ((-1)**(i+j))*(self[i,j])*((self.minor(i,j)).determinant())
return det

正如预期的那样,在每次递归调用中,self 都会变成一个适当的未成年人。但是当从递归调用返回时,它不会变回原来的矩阵。这会在 for 循环中造成麻烦(当函数到达 (n,m)==(1,1) 时,返回矩阵的这个值,但在 for 循环中,self 仍然是一个 1x1 矩阵 - 为什么?)

最佳答案

您确定您的 minor 返回一个新对象而不是对原始矩阵对象的引用吗?我使用了你的精确行列式方法并为你的类实现了一个 minor 方法,它对我来说很好用。

下面是您的矩阵类的快速/粗略实现,因为我没有您的实现。为简洁起见,我选择仅对方矩阵实现它,在这种情况下,这无关紧要,因为我们正在处理行列式。注意det方法,和你的一样,还有minor方法(其余的方法都在那里,方便实现和测试):

class matrix:
def __init__(self, n):
self.data = [0.0 for i in range(n*n)]
self.dim = n
@classmethod
def rand(self, n):
import random
a = matrix(n)
for i in range(n):
for j in range(n):
a[i,j] = random.random()
return a
@classmethod
def eye(self, n):
a = matrix(n)
for i in range(n):
a[i,i] = 1.0
return a
def __repr__(self):
n = self.dim
for i in range(n):
print str(self.data[i*n: i*n+n])
return ''
def __getitem__(self,(i,j)):
assert i < self.dim and j < self.dim
return self.data[self.dim*i + j]
def __setitem__(self, (i, j), val):
assert i < self.dim and j < self.dim
self.data[self.dim*i + j] = float(val)
#
def minor(self, i,j):
n = self.dim
assert i < n and j < n
a = matrix(self.dim-1)
for k in range(n):
for l in range(n):
if k == i or l == j: continue
if k < i:
K = k
else:
K = k-1
if l < j:
L = l
else:
L = l-1
a[K,L] = self[k,l]
return a
def det(self, i=0):
n = self.dim
if n == 1:
return self[0,0]
d = 0
for j in range(n):
d += ((-1)**(i+j))*(self[i,j])*((self.minor(i,j)).det())
return d
def __mul__(self, v):
n = self.dim
a = matrix(n)
for i in range(n):
for j in range(n):
a[i,j] = v * self[i,j]
return a
__rmul__ = __mul__

现在进行测试

import numpy as np
a = matrix(3)
# same matrix from the Wikipedia page
a[0,0] = 1
a[0,1] = 2
a[0,2] = 3
a[1,0] = 4
a[1,1] = 5
a[1,2] = 6
a[2,0] = 7
a[2,1] = 8
a[2,2] = 9
a.det() # returns 0.0
# trying with numpy the same matrix
A = np.array(a.data).reshape([3,3])
print np.linalg.det(A) # returns -9.51619735393e-16

numpy 的残差是因为它通过(高斯)消元法而不是拉普拉斯展开法计算行列式。您还可以比较随机矩阵的结果,看看您的行列式函数和 numpy 之间的差异不会超出 float 精度:

import numpy as np
a = 10*matrix.rand(4)
A = np.array( a.data ).reshape([4,4])
print (np.linalg.det(A) - a.det())/a.det() # varies between zero and 1e-14

关于python - 递归计算矩阵 (nxn) 的行列式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16510111/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com