- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我想每天从一个巨大的 hdf5 数据中选择一个子集。使用 where mask 将是完美的,但我不能让它与多索引一起工作(因为我必须有一个有两个条件的地方)。不能将 where 掩码与多索引一起使用:
import itertools
import pandas as pd
import numpy as np
a = ('A', 'B')
i = (0, 1, 2)
idx = pd.MultiIndex.from_tuples(list(itertools.product(a, i)),
names=('Alpha', 'Int'))
df = pd.DataFrame(np.random.randn(len(idx), 7), index=idx,
columns=('I', 'II', 'III', 'IV', 'V', 'VI', 'VII'))
好的,现在我把它放在一个 hdf 存储中
from pandas.io.pytables import HDFStore
store =HDFStore('cancella.h5', 'w')
store.append('df_mask',df)
但如果我再读一遍,我就有了
c = store.select_column('df_mask','index')
print c
这个索引是错误的。
0 0
1 1
2 2
3 3
4 4
5 5
dtype: int64
所以我不能使用 where mask .你能帮帮我吗?
最佳答案
我猜这是因为 pandas 可能会在将表放入 HDF5
之前reset_index
(原因可能是它试图避免任何潜在的重复索引,这在 dataframe 中是允许的,但是对数据库非常不利),并使用整数自动递增主键作为 HDF5
表中的索引。因此,您在帖子中编写的代码选择了这些自增主键。
可能还有其他一些更优雅的方法,但我发现了以下工作。 (如果 pandas 确实 reset_index
,那么现在多级索引变成了列...)
import itertools
import pandas as pd
import numpy as np
a = ('A', 'B')
i = (0, 1, 2)
idx = pd.MultiIndex.from_tuples(list(itertools.product(a, i)),
names=('Alpha', 'Int'))
df = pd.DataFrame(np.random.randn(len(idx), 7), index=idx,
columns=('I', 'II', 'III', 'IV', 'V', 'VI', 'VII'))
print(df)
store = pd.HDFStore('/home/Jian/Downloads/temp.h5')
store.append('df_mask',df)
store.select('df_mask', columns=['Alpha','Int'])
关于python - HDF + Pandas : how can I use a where mask with multindex?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31357896/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!