gpt4 book ai didi

python - 将 OpenCV 图像加载到 Scikit Learn

转载 作者:太空宇宙 更新时间:2023-11-03 12:03:23 27 4
gpt4 key购买 nike

我正在编写一个机器学习脚本来拍摄照片并为其添加标签。我将数据集放在一个文件夹中,然后将它们添加到数组中并为标签创建另一个数组。当我尝试使用 svm.fit 时出现错误:

File "scikit.py", line 43, in <module>
clf.fit(arrayimg, arraylabel)
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/svm/base.py", line 151, in fit
X, y = check_X_y(X, y, dtype=np.float64, order='C', accept_sparse='csr')
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 521, in check_X_y
ensure_min_features, warn_on_dtype, estimator)
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 405, in check_array
% (array.ndim, estimator_name))
ValueError: Found array with dim 3. Estimator expected <= 2.

这是我写的脚本:

import cv2
import numpy as py
from sklearn import svm

camera_port = 0
camera = cv2.VideoCapture(camera_port)
ramp_frames = 5

def getImage():
retval, im = camera.read()
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
return gray_image

def insertToArray(arrayone, arraytwo, no, true):
if (true==1):
directory = "/home/mkmeral/Desktop/opencv/strue/"
arraytwo.append(1)
else:
directory = "/home/mkmeral/Desktop/opencv/sfalse/"
arraytwo.append(0)

im = cv2.imread(directory + str(no) + ".png")
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
arrayone.append(gray_image)

arrayimg = []
arraylabel = []
count = 1
while (count<43):
insertToArray(arrayimg, arraylabel, count, 1)
print("True = " , count)
count = count + 1

count = 0
while (count<43):
insertToArray(arrayimg, arraylabel, count, 0)
print("False = ", count)
count = count + 1

print("Done adding to arrays")
clf = svm.SVC()
print("Done adding to arrayssss")
clf.fit(arrayimg, arraylabel)

print("Done fitting")
for i in xrange(ramp_frames):
temp = getImage()

testimage = getImage()

clf.predict(testimage)

我怎样才能使这些图像适应 Scikit 学习?预测从网络摄像头拍摄的图像会不会有问题?

最佳答案

我不是图像处理方面的专家,但我猜测您的 getImage 函数正在为每个图像返回一个二维数组。其中 sckit-learn 将期望每个训练实例都有一个一维数组。假设您所有的图像都具有相同的大小,那么以下应该有效

def getImage():
retval, im = camera.read()
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
return gray_image.flatten()

这会将您的每个图像转换为一维数组。如果您的图片尺寸不尽相同,则您需要执行一些图片处理步骤,例如调整大小或缩小采样。

关于python - 将 OpenCV 图像加载到 Scikit Learn,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40203416/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com