- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
重现的确切命令:
python train.py --logtostderr --train_dir=./models/train --pipeline_config_path=mask_rcnn_inception_v2_coco.config
我正在尝试在我自己的数据集上训练 Mask-RCNN 模型(从在 COCO 上训练的模型进行微调),但是一旦洗牌缓冲区被填满,这个过程就会被终止。
在此之前,nvidia-smi 显示内存使用量约为 10669MB/11175MB,但 GPU 利用率仅为 1%。
我尝试调整以下 train_config 设置:
batch_size: 1
batch_queue_capacity: 10
num_batch_queue_threads: 4
prefetch_queue_capacity: 5
对于 train_input_reader:
num_readers: 1
queue_capacity: 10
min_after_dequeue: 5
我相信我的问题类似于 TensorFlow Object Detection API - Out of Memory但我使用的是 GPU 而不是 CPU。
我正在训练的图像比较大(2048*2048),但是我想避免缩小尺寸,因为要检测的物体非常小。我的训练集包含 400 张图像(在 .tfrecord 文件中)。
有没有办法减少洗牌缓冲区的大小,看看这是否会减少内存需求?
INFO:tensorflow:Restoring parameters from ./models/train/model.ckpt-0
INFO:tensorflow:Restoring parameters from ./models/train/model.ckpt-0
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Saving checkpoint to path ./models/train/model.ckpt
INFO:tensorflow:Saving checkpoint to path ./models/train/model.ckpt
INFO:tensorflow:Starting Queues.
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global_step/sec: 0
2018-06-19 12:21:33.487840: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:94] Filling up shuffle buffer (this may take a while): 97 of 2048
2018-06-19 12:21:43.547326: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:94] Filling up shuffle buffer (this may take a while): 231 of 2048
2018-06-19 12:21:53.470634: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:94] Filling up shuffle buffer (this may take a while): 381 of 2048
2018-06-19 12:21:57.030494: I tensorflow/core/kernels/data/shuffle_dataset_op.cc:129] Shuffle buffer filled.
Killed
最佳答案
您可以尝试以下步骤:
1.设置batch_size=1
(或自己尝试)
2.更改 “默认值”:可选 uint32 shuffle_buffer_size = 11 [default = 256]
(或尝试您自己的) 代码在这里
models/research/object_detection/protos/input_reader.proto
Line 40 in ce03903
optional uint32 shuffle_buffer_size = 11 [default = 2048];
原始集合是:
optional uint32 shuffle_buffer_size = 11 [default = 2048]
默认值为 2048,对于 batch_size=1
来说太大了,应该相应地修改,我认为它会消耗大量 RAM。
3.重新编译Protobuf库
来自tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.
关于python - Tensorflow 对象检测 API 被杀死 - OOM。如何减少随机播放缓冲区的大小?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50929266/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!