gpt4 book ai didi

python - keras cnn模型仅针对所有测试图像预测一个类别

转载 作者:太空宇宙 更新时间:2023-11-03 11:58:51 25 4
gpt4 key购买 nike

我试图建立一个图像分类模型,其中有两个类,分别有(1)或没有(0)我可以建立模型并得到1的精度这太好了,不可能是真的(这是个问题),但是当我使用predict_generator时,因为我的图像在文件夹中,它只返回1个类0(不带类)。好像有个问题,但我解决不了,我看了很多文章,但还是解决不了。

image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957 #!ls ../data/train/* | wc -l
no_test_images = 652 #!ls ../data/test/* | wc -l
no_valid_images = 6156 #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'


test folder structure is the following:
test/test_folder/images_from_both_classes.jpg


#!ls ../data/train/without/ | wc -l 5606 #theres no class inbalance
#!ls ../data/train/with/ | wc -l 6351

#!ls ../data/valid/without/ | wc -l 2899
#!ls ../data/valid/with/ | wc -l 3257

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = False)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = 1,
class_mode = None,
shuffle = False)

mpd = classification_model.fit_generator(
train_generator,
steps_per_epoch = no_train_images // batch_size, # number of images per epoch
epochs = epochs, # number of iterations over the entire data
validation_data = valid_generator,
validation_steps = no_valid_images // batch_size)

纪元1/10
373/373[=========]-119s 320ms/步-损耗:0.5214-acc:0.7357-valu损耗:0.2720-valu acc:0.8758
纪元2/10
373/373[=========]-120s 322ms/步-损耗:0.2485-acc:0.8935-valu损耗:0.0568-valu acc:0.9829
纪元3/10
373/373[=========]-130s 350ms/步-损耗:0.1427-acc:0.9435-valu损耗:0.0410-valu acc:0.9796
纪元4/10
373/373[=========]-127S 341Ms/步-损耗:0.1053-acc:0.9623-valu损耗:0.0197-valu acc:0.9971
纪元5/10
373/373[=========]-126S 337MS/步-损耗:0.0817-acc:0.9682-valu损耗:0.0136-valu acc:0.9948
纪元6/10
373/373[==========]-123s 329ms/步-损耗:0.0665-acc:0.9754-val_损耗:0.0116-val_acc:0.9985
纪元7/10
373/373[=========]-140S 376ms/步-损耗:0.0518-acc:0.9817-valu损耗:0.0035-valu acc:0.9997
纪元8/10
373/373[=======]-144s 386ms/步-损耗:0.0539-acc:0.9832-valu损耗:8.9459e-04-valu acc:1.0000
纪元9/10
373/373[=========]-122S 327MS/步-损耗:0.0434-acc:0.9850-valu损耗:0.0023-valu acc:0.9997
纪元10/10
373/373[=========]-125S 336ms/步-损耗:0.0513-acc:0.9844-valu损耗:0.0014-valu acc:1.0000
valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator,
no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})

print(results)

损耗:5.404246180551993e-06精度:1.0
打印(预测的分类索引)-全部0
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
                              Filename Predictions
0 test_folder/video_3_frame10.jpg without
1 test_folder/video_3_frame1001.jpg without
2 test_folder/video_3_frame1006.jpg without
3 test_folder/video_3_frame1008.jpg without
4 test_folder/video_3_frame1009.jpg without
5 test_folder/video_3_frame1010.jpg without
6 test_folder/video_3_frame1013.jpg without
7 test_folder/video_3_frame1014.jpg without
8 test_folder/video_3_frame1022.jpg without
9 test_folder/video_3_frame1023.jpg without
10 test_folder/video_3_frame103.jpg without
11 test_folder/video_3_frame1036.jpg without
12 test_folder/video_3_frame1039.jpg without
13 test_folder/video_3_frame104.jpg without
14 test_folder/video_3_frame1042.jpg without
15 test_folder/video_3_frame1043.jpg without
16 test_folder/video_3_frame1048.jpg without
17 test_folder/video_3_frame105.jpg without
18 test_folder/video_3_frame1051.jpg without
19 test_folder/video_3_frame1052.jpg without
20 test_folder/video_3_frame1054.jpg without
21 test_folder/video_3_frame1055.jpg without
22 test_folder/video_3_frame1057.jpg without
23 test_folder/video_3_frame1059.jpg without
24 test_folder/video_3_frame1060.jpg without

…只是一些输出,但所有650+都没有类。
这是输出,正如您所看到的,对于without类,所有预测值都为0。
这是我第一次尝试使用Keras和CNN,所以任何帮助都会非常感谢。
更新
我已经解决了。我目前正在研究精确度,但主要问题现在已经解决了。
这是引起问题的线路。
predicted_class_indices=np.argmax(scores,axis=1)

argmax将返回结果的索引位置,但由于我使用的是二进制类,在我的最后一层,我有1密集它将只返回一个值,因此它将始终返回第一个类(0作为索引位置)。由于网络是唯一设置的,返回一个类。
更改以下内容修复了我的问题。
将列车和测试发电机的“分类”模式更改为“分类”
将最终密集层从1更改为2,这样将返回两个类的分数/概率。因此,当您使用argmax时,它将返回最高分的索引位置,指示它预测了哪个类。

最佳答案

您应该更改此行:

test_datagen = ImageDataGenerator()

签署人:
test_datagen = ImageDataGenerator(rescale=1. / 255)

如果不以与列车/有效集相同的方式对测试集进行预处理,将无法获得预期的结果

关于python - keras cnn模型仅针对所有测试图像预测一个类别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54790555/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com