- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在网格上定义了以下 3D 表面:
%pylab inline
def muller_potential(x, y, use_numpy=False):
"""Muller potential
Parameters
----------
x : {float, np.ndarray, or theano symbolic variable}
X coordinate. If you supply an array, x and y need to be the same shape,
and the potential will be calculated at each (x,y pair)
y : {float, np.ndarray, or theano symbolic variable}
Y coordinate. If you supply an array, x and y need to be the same shape,
and the potential will be calculated at each (x,y pair)
Returns
-------
potential : {float, np.ndarray, or theano symbolic variable}
Potential energy. Will be the same shape as the inputs, x and y.
Reference
---------
Code adapted from https://cims.nyu.edu/~eve2/ztsMueller.m
"""
aa = [-1, -1, -6.5, 0.7]
bb = [0, 0, 11, 0.6]
cc = [-10, -10, -6.5, 0.7]
AA = [-200, -100, -170, 15]
XX = [1, 0, -0.5, -1]
YY = [0, 0.5, 1.5, 1]
# use symbolic algebra if you supply symbolic quantities
exp = np.exp
value = 0
for j in range(0, 4):
if use_numpy:
value += AA[j] * numpy.exp(aa[j] * (x - XX[j])**2 + bb[j] * (x - XX[j]) * (y - YY[j]) + cc[j] * (y - YY[j])**2)
else: # use sympy
value += AA[j] * sympy.exp(aa[j] * (x - XX[j])**2 + bb[j] * (x - XX[j]) * (y - YY[j]) + cc[j] * (y - YY[j])**2)
return value
给出了以下情节:
minx=-1.5
maxx=1.2
miny=-0.2
maxy=2
ax=None
grid_width = max(maxx-minx, maxy-miny) / 50.0
xx, yy = np.mgrid[minx : maxx : grid_width, miny : maxy : grid_width]
V = muller_potential(xx, yy, use_numpy=True)
V = ma.masked_array(V, V>200)
contourf(V, 40)
colorbar();
我编写了以下代码来定义该网格上两点之间的最短路径。我在 meshgrid 的两个相邻点之间使用的度量由 (V[e]-V[cc])**2
给出,其中 cc
当前单元格和 e
相邻小区之一。邻居定义为全连通性:包括对角线在内的所有直接邻居。
def dijkstra(V):
mask = V.mask
visit_mask = mask.copy() # mask visited cells
m = numpy.ones_like(V) * numpy.inf
connectivity = [(i,j) for i in [-1, 0, 1] for j in [-1, 0, 1] if (not (i == j == 0))]
cc = unravel_index(V.argmin(), m.shape) # current_cell
m[cc] = 0
P = {} # dictionary of predecessors
#while (~visit_mask).sum() > 0:
for _ in range(V.size):
#print cc
neighbors = [tuple(e) for e in asarray(cc) - connectivity
if e[0] > 0 and e[1] > 0 and e[0] < V.shape[0] and e[1] < V.shape[1]]
neighbors = [ e for e in neighbors if not visit_mask[e] ]
tentative_distance = [(V[e]-V[cc])**2 for e in neighbors]
for i,e in enumerate(neighbors):
d = tentative_distance[i] + m[cc]
if d < m[e]:
m[e] = d
P[e] = cc
visit_mask[cc] = True
m_mask = ma.masked_array(m, visit_mask)
cc = unravel_index(m_mask.argmin(), m.shape)
return m, P
def shortestPath(start, end, P):
Path = []
step = end
while 1:
Path.append(step)
if step == start: break
step = P[step]
Path.reverse()
return asarray(Path)
D, P = dijkstra(V)
path = shortestPath(unravel_index(V.argmin(), V.shape), (40,4), P)
结果如下:
contourf(V, 40)
plot(path[:,1], path[:,0], 'r.-')
路径长度为112:
print path.shape[0]
112
我想知道是否有可能计算出 start
和 end
之间精确长度 n
的最短路径,其中 n
给函数的参数。
备注:如果我将使用的指标从 (V[e]-V[cc])**2
更改为 V[e]-V[cc]
,这增加了负距离我得到的图看起来更好,因为它按预期通过局部最小值:
最佳答案
由于我想获得一个合理的路径,在潜力中采样盆地,我写了下面的函数。为了完整起见,我记得我写的 dijkstra
函数:
%pylab
def dijkstra(V, start):
mask = V.mask
visit_mask = mask.copy() # mask visited cells
m = numpy.ones_like(V) * numpy.inf
connectivity = [(i,j) for i in [-1, 0, 1] for j in [-1, 0, 1] if (not (i == j == 0))]
cc = start # current_cell
m[cc] = 0
P = {} # dictionary of predecessors
#while (~visit_mask).sum() > 0:
for _ in range(V.size):
#print cc
neighbors = [tuple(e) for e in asarray(cc) - connectivity
if e[0] > 0 and e[1] > 0 and e[0] < V.shape[0] and e[1] < V.shape[1]]
neighbors = [ e for e in neighbors if not visit_mask[e] ]
t.ntative_distance = asarray([V[e]-V[cc] for e in neighbors])
for i,e in enumerate(neighbors):
d = tentative_distance[i] + m[cc]
if d < m[e]:
m[e] = d
P[e] = cc
visit_mask[cc] = True
m_mask = ma.masked_array(m, visit_mask)
cc = unravel_index(m_mask.argmin(), m.shape)
return m, P
start, end = unravel_index(V.argmin(), V.shape), (40,4)
D, P = dijkstra(V, start)
def shortestPath(start, end, P):
Path = []
step = end
while 1:
Path.append(step)
if step == start: break
step = P[step]
Path.reverse()
return asarray(Path)
path = shortestPath(start, end, P)
给出了以下情节:
contourf(V, 40)
plot(path[:,1], path[:,0], 'r.-')
colorbar()
然后,extend_path
函数背后的基本思想是扩展通过获取路径中节点的邻居使潜力最小化而获得的最短路径。一组记录在扩展过程中已经访问过的单元格。
def get_neighbors(cc, V, visited_nodes):
connectivity = [(i,j) for i in [-1, 0, 1] for j in [-1, 0, 1] if (not (i == j == 0))]
neighbors = [tuple(e) for e in asarray(cc) - connectivity
if e[0] > 0 and e[1] > 0 and e[0] < V.shape[0] and e[1] < V.shape[1]]
neighbors = [ e for e in neighbors if e not in visited_nodes ]
return neighbors
def extend_path(V, path, n):
"""
Extend the given path with n steps
"""
path = [tuple(e) for e in path]
visited_nodes = set()
for _ in range(n):
visited_nodes.update(path)
dist_min = numpy.inf
for i_cc, cc in enumerate(path[:-1]):
neighbors = get_neighbors(cc, V, visited_nodes)
next_step = path[i_cc+1]
next_neighbors = get_neighbors(next_step, V, visited_nodes)
join_neighbors = list(set(neighbors) & set(next_neighbors))
if len(join_neighbors) > 0:
tentative_distance = [ V[e] for e in join_neighbors ]
argmin_dist = argmin(tentative_distance)
if tentative_distance[argmin_dist] < dist_min:
dist_min, new_step, new_step_index = tentative_distance[argmin_dist], join_neighbors[argmin_dist], i_cc+1
path.insert(new_step_index, new_step)
return path
下面是我将最短路径延伸250步得到的结果:
path_ext = extend_path(V, path, 250)
print len(path), len(path_ext)
path_ext = numpy.asarray(path_ext)
contourf(V, 40)
plot(path[:,1], path[:,0], 'w.-')
plot(path_ext[:,1], path_ext[:,0], 'r.-')
colorbar()
正如预期的那样,当我增加 n
时,我首先开始对较深的盆地进行采样,如下所示:
rcParams['figure.figsize'] = 14,8
for i_plot, n in enumerate(range(0,250,42)):
path_ext = numpy.asarray(extend_path(V, path, n))
subplot('23%d'%(i_plot+1))
contourf(V, 40)
plot(path_ext[:,1], path_ext[:,0], 'r.-')
title('%d path steps'%len(path_ext))
关于python - 计算网格上两点之间恰好有 `n` 个节点的最短路径,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39244636/
我看到以下宏 here . static const char LogTable256[256] = { #define LT(n) n, n, n, n, n, n, n, n, n, n, n,
这个问题不太可能帮助任何 future 的访问者;它只与一个小的地理区域、一个特定的时间点或一个非常狭窄的情况有关,这些情况并不普遍适用于互联网的全局受众。为了帮助使这个问题更广泛地适用,visit
所以我得到了这个算法我需要计算它的时间复杂度 这样的 for i=1 to n do k=i while (k<=n) do FLIP(A[k]) k
n 的 n 次方(即 n^n)是多项式吗? T(n) = 2T(n/2) + n^n 可以用master方法求解吗? 最佳答案 它不仅不是多项式,而且比阶乘还差。 O(n^n) 支配 O(n!)。同样
我正在研究一种算法,它可以在带有变音符号的字符(tilde、circumflex、caret、umlaut、caron)及其“简单”字符之间进行映射。 例如: ń ǹ ň ñ ṅ ņ ṇ
嗯..我从昨天开始学习APL。我正在观看 YouTube 视频,从基础开始学习各种符号,我正在使用 NARS2000。 我想要的是打印斐波那契数列。我知道有好几种代码,但是因为我没有研究过高深的东西,
已关闭。这个问题是 off-topic 。目前不接受答案。 想要改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 已关闭12 年前。 Improve th
谁能帮我从 N * N * N → N 中找到一个双射数学函数,它接受三个参数 x、y 和 z 并返回数字 n? 我想知道函数 f 及其反函数 f',如果我有 n,我将能够通过应用 f'(n) 来
场景: 用户可以在字符串格式的方程式中输入任意数量的括号对。但是,我需要检查以确保所有括号 ( 或 ) 都有一个相邻的乘数符号 *。因此 3( 应该是 3*( 和 )3 应该是 )*3。 我需要将所有
在 Java 中,表达式: n+++n 似乎评估为等同于: n++ + n 尽管 +n 是一个有效的一元运算符,其优先级高于 n + n 中的算术 + 运算符。因此编译器似乎假设运算符不能是一元运算符
当我阅读 this 问题我记得有人曾经告诉我(很多年前),从汇编程序的角度来看,这两个操作非常不同: n = 0; n = n - n; 这是真的吗?如果是,为什么会这样? 编辑: 正如一些回复所指出
我正在尝试在reveal.js 中加载外部markdown 文件,该文件已编写为遵守数据分隔符语法: You can write your content as a separate file and
我试图弄清楚如何使用 Javascript 生成一个随机 11 个字符串,该字符串需要特定的字母/数字序列,以及位置。 ----------------------------------------
我最近偶然发现了一个资源,其中 2T(n/2) + n/log n 类型 的递归被 MM 宣布为无法解决。 直到今天,当另一种资源被证明是矛盾的(在某种意义上)时,我才接受它作为引理。 根据资源(下面
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 8 年前。 Improve th
我完成的一个代码遵循这个模式: for (i = 0; i < N; i++){ // O(N) //do some processing... } sort(array, array + N
有没有办法证明 f(n) + g(n) = theta(n^2) 还是不可能?假设 f(n) = theta(n^2) & g(n) = O(n^2) 我尝试了以下方法:f(n) = O(n^2) &
所以我目前正在尝试计算我拥有的一些数据的 Pearson R 和 p 值。这是通过以下代码完成的: import numpy as np from scipy.stats import pearson
ltree 列的默认排序为文本。示例:我的表 id、parentid 和 wbs 中有 3 列。 ltree 列 - wbs 将 1.1.12, 1.1.1, 1.1.2 存储在不同的行中。按 wbs
我的目标是编写一个程序来计算在 python 中表示数字所需的位数,如果我选择 number = -1 或任何负数,程序不会终止,这是我的代码: number = -1 cnt = 0 while(n
我是一名优秀的程序员,十分优秀!