- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我之前和每次都只是在 model.fit() 函数上使用回调,将 tensorboard 与一些相当简单的神经网络一起使用。我试图了解更多关于 GAN 的知识,并试图理解像这样的一些代码
class ACGAN():
def __init__(self):
# Input shape
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.num_classes = 10
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=losses,
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
img = self.generator([noise, label])
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
# and the label of that image
valid, target_label = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model([noise, label], [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)
def build_generator(self):
.......
def build_discriminator(self):
.........
def train(self, epochs, batch_size=128, sample_interval=50):
# Load the dataset
(X_train, y_train), (_, _) = mnist.load_data()
# Configure inputs
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, 100))
# The labels of the digits that the generator tries to create an
# image representation of
sampled_labels = np.random.randint(0, 10, (batch_size, 1))
# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, sampled_labels])
# Image labels. 0-9 if image is valid or 10 if it is generated (fake)
img_labels = y_train[idx]
fake_labels = 10 * np.ones(img_labels.shape)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, fake_labels])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
# Train the generator
g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.save_model()
self.sample_images(epoch)
def sample_images(self, epoch):
r, c = 10, 10
noise = np.random.normal(0, 1, (r * c, 100))
sampled_labels = np.array([num for _ in range(r) for num in range(c)])
gen_imgs = self.generator.predict([noise, sampled_labels])
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
if __name__ == '__main__':
acgan = ACGAN()
acgan.train(epochs=14000, batch_size=32, sample_interval=200)
由于这段代码中没有 fit() 函数,我不确定应该在哪里导入 tensorboard 回调以及如何可视化模型?我删除了构建生成器和构建鉴别器函数,因为我认为它们不会在其中,但如果我错了请纠正我。我无法发布整个代码,所以 here you go如果你想要更多的细节
最佳答案
我正在使用 TF2,以下代码对我有用:
log_dir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
summary_writer = tf.summary.create_file_writer(logdir=log_dir)
for epoch in range(num_epochs):
epoch_loss_avg = tf.keras.metrics.Mean()
epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
for x, y in train_dataset:
loss_value, grads = grad(model, x, y)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
epoch_loss_avg(loss_value)
epoch_accuracy(y, model(x))
train_loss_results.append(epoch_loss_avg.result())
train_accuracy_results.append(epoch_accuracy.result())
with summary_writer.as_default():
tf.summary.scalar('epoch_loss_avg', epoch_loss_avg.result(), step=optimizer.iterations)
tf.summary.scalar('epoch_accuracy', epoch_accuracy.result(), step=optimizer.iterations)
您可以找到完整的代码 here因为我删除了我的代码中的一些评论以保持答案准确。我不明白这是如何工作的,因为我没有找到 TF2 的文档,我的代码只是根据我在其他人的代码中找到的内容进行的反复试验。
关于python - 没有 fit() 使用 keras 和 tf 的 Tensorboard,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52471464/
我正在使用张量板可视化句子嵌入。我有每个句子嵌入的标签。如何为每个标签设置颜色?例如 embedding vector Labels [0.234
在 Tensorboard 中有一个按钮将计算图保存为 png,有没有办法将其导出为矢量图形,如 eps? 最佳答案 您可以使用 SVG Crowbar 以 svg 格式保存 为“SVG Crowba
在使用 Keras Tuner 完成的超参数搜索期间,我遇到了明显的循环依赖,试图将日志数据用于 TensorBoard。 , 对于使用 TF2 构建的模型。后者的典型设置需要在调谐器的 search
我正在关注 Sentdex's DQN tutorial .我一直在尝试在 TF 2.0 中重写自定义 TensorBoard。重点是在文件中添加**stats,例如:{'reward_avg': -
我正在尝试启动 tensorboard 并查看我创建的图表。 import tensorflow as tf logPath = "C:\\path\\to\\log" -- can also be
最近的 TensorFlow 构建似乎有问题。 TensorBoard 可视化工具在从源代码编译以用于 GPU 时不会运行。错误如下: $ tensorboard Traceback (most re
我按照 pytorch.org 中的教程进行操作出现错误:TensorBoard logging requires TensorBoard version 1.15 or above ,但我已经安装了
我使用 tensorboard 创建了一些日志文件,但我无法访问它们。 使用 tensorboard 或 tensorboard --logdir=logs/ 命令提示符 出现以下错误:- C:\Us
我正在使用 Win10Pro、gpu (CUDA 10.1)、Python 3.7.5、Tensorflow 2.1.0 和 Tensorboard 2.1.0 在 ipython 中使用以下代码运行
在我执行的 Python 代码中train_writer = tf.summary.FileWriter(TBOARD_LOGS_DIR)train_writer.add_graph(sess.gra
我正在使用 Tensorboard 为我的实验绘制损失图。 我还想将测试结果添加到 Tensorboard 以便于进行实验比较,但我找不到执行此操作的函数。 我只需要一个简单的表格,例如: | Exp
当运行一个 mnist 分类程序以在 tensorboard 中查看时,它会显示多个图,即使只有一个图。我收到错误消息: 图表如下所示: 最佳答案 这看起来好像是由于同一目录中存在多个张量板文件。想必
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 3年前关闭。 Improve thi
pre { line-height: 125% } td.linenos .normal { color: inherit; background-c
有人让 TensorBoard 工作了吗?似乎找不到我的 ScalarSummary 文件。我正在使用: $ python /Users/nikhilbuduma/tensorflow/lib/pyt
我正在运行一个云 ML 引擎作业,我的张量板图显示隐藏层的零值比例随着步数的增加稳步增加到 1。这个情节应该如何解释?我相信这是一件好事,因为更多的零值表明该模型对其所做的预测越来越“确定”。 最佳答
我正在使用 TensorBoard 来可视化网络指标和图表。 我创建了一个 session sess = tf.InteractiveSession()并在 Jupyter Notebook 中构建图
我在 Anaconda 环境中使用 Python(jupyter notebook) 操作系统:Ubuntu tensorflow 版本:1.14.0 Python版本:3.6 https://git
可以在同一台机器上运行多个 tensorboard 实例(具有不同的日志目录)。甚至还有可以启动/重用 TB 进程的 tensorboard.manager 类。 问题是所有这些 TB 都在不同的端口
我构建了一个网络来尝试预测表面温度的光栅图像。网络的输出是一个 (1000, 1000) 大小的数组,代表一个光栅图像。为了训练和测试,将这些与各自样本的真实栅格进行比较。我明白如何add the t
我是一名优秀的程序员,十分优秀!