gpt4 book ai didi

python - 没有 fit() 使用 keras 和 tf 的 Tensorboard

转载 作者:太空宇宙 更新时间:2023-11-03 11:39:32 24 4
gpt4 key购买 nike

我之前和每次都只是在 model.fit() 函数上使用回调,将 tensorboard 与一些相当简单的神经网络一起使用。我试图了解更多关于 GAN 的知识,并试图理解像这样的一些代码

class ACGAN():
def __init__(self):
# Input shape
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.num_classes = 10
self.latent_dim = 100

optimizer = Adam(0.0002, 0.5)
losses = ['binary_crossentropy', 'sparse_categorical_crossentropy']

# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss=losses,
optimizer=optimizer,
metrics=['accuracy'])

# Build the generator
self.generator = self.build_generator()

# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
noise = Input(shape=(self.latent_dim,))
label = Input(shape=(1,))
img = self.generator([noise, label])

# For the combined model we will only train the generator
self.discriminator.trainable = False

# The discriminator takes generated image as input and determines validity
# and the label of that image
valid, target_label = self.discriminator(img)

# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model([noise, label], [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)

def build_generator(self):
.......

def build_discriminator(self):
.........

def train(self, epochs, batch_size=128, sample_interval=50):

# Load the dataset
(X_train, y_train), (_, _) = mnist.load_data()

# Configure inputs
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)

# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))

for epoch in range(epochs):

# ---------------------
# Train Discriminator
# ---------------------

# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]

# Sample noise as generator input
noise = np.random.normal(0, 1, (batch_size, 100))

# The labels of the digits that the generator tries to create an
# image representation of
sampled_labels = np.random.randint(0, 10, (batch_size, 1))

# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, sampled_labels])

# Image labels. 0-9 if image is valid or 10 if it is generated (fake)
img_labels = y_train[idx]
fake_labels = 10 * np.ones(img_labels.shape)

# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, [valid, img_labels])
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, fake_labels])
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

# ---------------------
# Train Generator
# ---------------------

# Train the generator
g_loss = self.combined.train_on_batch([noise, sampled_labels], [valid, sampled_labels])

# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[3], 100*d_loss[4], g_loss[0]))

# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.save_model()
self.sample_images(epoch)

def sample_images(self, epoch):
r, c = 10, 10
noise = np.random.normal(0, 1, (r * c, 100))
sampled_labels = np.array([num for _ in range(r) for num in range(c)])
gen_imgs = self.generator.predict([noise, sampled_labels])
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5

fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()



if __name__ == '__main__':
acgan = ACGAN()
acgan.train(epochs=14000, batch_size=32, sample_interval=200)

由于这段代码中没有 fit() 函数,我不确定应该在哪里导入 tensorboard 回调以及如何可视化模型?我删除了构建生成器和构建鉴别器函数,因为我认为它们不会在其中,但如果我错了请纠正我。我无法发布整个代码,所以 here you go如果你想要更多的细节

最佳答案

我正在使用 TF2,以下代码对我有用:

log_dir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
summary_writer = tf.summary.create_file_writer(logdir=log_dir)
for epoch in range(num_epochs):
epoch_loss_avg = tf.keras.metrics.Mean()
epoch_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()

for x, y in train_dataset:
loss_value, grads = grad(model, x, y)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
epoch_loss_avg(loss_value)
epoch_accuracy(y, model(x))

train_loss_results.append(epoch_loss_avg.result())
train_accuracy_results.append(epoch_accuracy.result())

with summary_writer.as_default():
tf.summary.scalar('epoch_loss_avg', epoch_loss_avg.result(), step=optimizer.iterations)
tf.summary.scalar('epoch_accuracy', epoch_accuracy.result(), step=optimizer.iterations)

您可以找到完整的代码 here因为我删除了我的代码中的一些评论以保持答案准确。我不明白这是如何工作的,因为我没有找到 TF2 的文档,我的代码只是根据我在其他人的代码中找到的内容进行的反复试验。

关于python - 没有 fit() 使用 keras 和 tf 的 Tensorboard,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52471464/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com