- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用 tf.keras API 构建我的 CNN 模型,并使用 tf.Dataset API 为我的模型创建输入管道。 tf.keras.datasets
中的 mnist 数据集用于测试,并通过执行代码在内存中准备:
(train_images,train_labels),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()
还有一些与我的 keras 模型兼容的预处理:
Train_images = np.expand_dims(train_images,3).astype('float')/255.0
Test_images = np.expand_dims(test_images,3).astype('float')/255.0
Train_labels = tf.keras.utils.to_categorical(train_labels)
Test_labels = tf.keras.utils.to_categorical(test_labels)
这些数据以数组的形式存储在内存中,创建数据集对象有两种选择。第一个是简单地使用 tf.data.Dataset.from_tensor_slices
:
image = tf.data.Dataset.from_tensor_slices((Train_images,Train_labels))
并将此结果对象输入到 model.fit():
model.fit(x=image,steps_per_epoch=1000)
或通过以下方式输入此数据集的迭代器:
iterator = image.make_one_shot_iterator()
model.fit(x=iterator,steps_per_epoch=1000)
这两个选项都可以正常工作,因为此处名为 image 的数据集是使用内存中的数据创建的。然而,根据Importing Data在这里,我们可能希望避免这样做,因为它会多次复制数据并占用内存。因此,另一种选择是基于 tf.placeholder
以及可初始化迭代器创建这样的数据集对象:
X = tf.placeholder(tf.float32,shape = [60000,28,28,1])
Y = tf.placeholder(tf.float32,shape = [60000,10])
image2 = tf.data.Dataset.from_tensor_slices((X,Y))
iterator2 = image.make_initializable_iterator()
with tf.Session() as sess:
sess.run(iterator2.initializer,feed_dict={X:Train_images,Y:Train_labels}
sess.run(iterator2.get_next())
这种迭代器在使用 tf.Session()
时在内存中提供数据时工作正常,并且避免了数据的多个副本。但我找不到让它与 keras.model.fit()
一起工作的方法,因为你不能真正调用 iterator.initializer
或在那里提供任何数据。有没有办法使用这种迭代器?
最佳答案
我不认为 keras 正式支持传递可初始化迭代器的情况,正如您所指出的,没有地方可以提供占位符和值映射。
但是,可以使用 keras callbacks 解决方法:
import tensorflow as tf
import numpy as np
import pandas as pd
# Make sure only tensorflow.keras is imported, don't mix with keras
from tensorflow.keras import layers
import tensorflow.keras.backend as K
# example data
x_values = np.random.randn(200, 100).astype(np.float32)
y_labels = np.random.randint(low=0, high=9, size=200)
graph = tf.Graph()
with graph.as_default():
# make datasets from placeholders as in https://www.tensorflow.org/guide/datasets#reading_input_data
# X:
features_placeholder = tf.placeholder(tf.float32, x_values.shape, name='features')
dataset_x = tf.data.Dataset.from_tensor_slices({'x': features_placeholder})
# Y:
labels_placeholder = tf.placeholder(tf.float32, [None], name='labels')
dataset_y = tf.data.Dataset.from_tensor_slices({'y': labels_placeholder})
# compose datasets to make X-Y pairs for training
dataset0 = tf.data.Dataset.zip((dataset_x, dataset_y))
dataset0 = dataset0.batch(16).repeat()
# build model with keras
inputs = tf.keras.Input(name='x', shape=(x_values.shape[1],))
mlp1 = layers.Dense(16, name='mlp-1', activation='relu')
mlp1_out = mlp1(inputs)
output = layers.Dense(1, name='y', activation='linear')
output_out = output(mlp1_out)
model = tf.keras.Model(inputs=inputs, outputs=output_out)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001), loss='mse', metrics=['mse'])
iterator = dataset0.make_initializable_iterator()
feed_dict = { labels_placeholder: y_labels, features_placeholder: x_values }
class InitIteratorCallback(tf.keras.callbacks.Callback):
"""
Ensures that placeholders in dataset are initialized before each epoch begins
"""
def on_epoch_begin(self, epoch, logs=None):
sess = K.get_session()
sess.run(iterator.initializer, feed_dict=feed_dict)
model.fit(iterator, callbacks=[InitIteratorCallback()],
epochs=10, steps_per_epoch=300)
关于python - keras model.fit() 提供了 tf.Dataset 对象的可初始化迭代器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52691569/
我之前让 dll 注入(inject)器变得简单,但我有 Windows 7,我用 C# 和 C++ 做了它,它工作得很好!但是现在当我在 Windows 8 中尝试相同的代码时,它似乎没有以正确的方
我正在尝试制作一个名为 core-splitter 的元素,该元素在 1.0 中已弃用,因为它在我们的项目中起着关键作用。 如果您不知道 core-splitter 的作用,我可以提供一个简短的描述。
我有几个不同的蜘蛛,想一次运行所有它们。基于 this和 this ,我可以在同一个进程中运行多个蜘蛛。但是,我不知道如何设计一个信号系统来在所有蜘蛛都完成后停止 react 器。 我试过了: cra
有没有办法在达到特定条件时停止扭曲 react 器。例如,如果一个变量被设置为某个值,那么 react 器应该停止吗? 最佳答案 理想情况下,您不会将变量设置为一个值并停止 react 器,而是调用
https://code.angularjs.org/1.0.0rc9/angular-1.0.0rc9.js 上面的链接定义了外部js文件,我不知道Angular-1.0.0rc9.js的注入(in
我正在尝试运行一个函数并将服务注入(inject)其中。我认为这可以使用 $injector 轻松完成.所以我尝试了以下(简化示例): angular.injector().invoke( [ "$q
在 google Guice 中,我可以使用函数 createInjector 创建基于多个模块的注入(inject)器。 因为我使用 GWT.create 在 GoogleGin 中实例化注入(in
我在 ASP.NET Core 1.1 解决方案中使用配置绑定(bind)。基本上,我在“ConfigureServices Startup”部分中有一些用于绑定(bind)的简单代码,如下所示: s
我在 Spring MVC 中设置 initBinder 时遇到一些问题。我有一个 ModelAttribute,它有一个有时会显示的字段。 public class Model { privat
我正在尝试通过jquery post发布knockoutjs View 模型 var $form = $('#barcodeTemplate form'); var data = ko.toJS(vm
如何为包含多态对象集合的复杂模型编写自定义模型绑定(bind)程序? 我有下一个模型结构: public class CustomAttributeValueViewModel { publi
您好,我正在尝试实现我在 this article 中找到的扩展方法对于简单的注入(inject)器,因为它不支持开箱即用的特定构造函数的注册。 根据这篇文章,我需要用一个假的委托(delegate)
你好,我想自动注册我的依赖项。 我现在拥有的是: public interface IRepository where T : class public interface IFolderReposi
我正在使用 Jasmine 测试一些 Angular.js 代码。为此,我需要一个 Angular 注入(inject)器: var injector = angular.injector(['ng'
我正在使用 Matlab 代码生成器。不可能包含代码风格指南。这就是为什么我正在寻找一个工具来“ reshape ”、重命名和重新格式化生成的代码,根据我的: 功能横幅约定 文件横幅约定 命名约定 等
这个问题在这里已经有了答案: Where and why do I have to put the "template" and "typename" keywords? (8 个答案) 关闭 8
我开发了一种工具,可以更改某些程序的外观。为此,我需要在某些进程中注入(inject)一个 dll。 现在我基本上使用这个 approach .问题通常是人们无法注入(inject) dll,因为他们
我想使用 swing、spring 和 hibernate 编写一个 java 应用程序。 我想使用数据绑定(bind)器用 bean 的值填充 gui,并且我还希望它反射(reflect) gui
我有这段代码,当两个蜘蛛完成后,程序仍在运行。 #!C:\Python27\python.exe from twisted.internet import reactor from scrapy.cr
要点是 Spring Batch (v2) 测试框架具有带有 @Autowired 注释的 JobLauncherTestUtils.setJob。我们的测试套件有多个 Job 类提供者。因为这个类不
我是一名优秀的程序员,十分优秀!