gpt4 book ai didi

python - Tensorflow 中的分类和连续交叉特征列

转载 作者:太空宇宙 更新时间:2023-11-03 11:39:21 25 4
gpt4 key购买 nike

在使用 Tensorflow 的估计器和 feature_column 时,可以跨分类列和分桶连续列 crossed column但不是分类和数字交叉。是否可以从 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/feature_column/feature_column.py#L704 实现此功能? ?

如果能看到在 Tensforflow 图表中实现相同结果的任何替代方法,那就太好了。

import numpy as np

cont = np.array([1,2,3])
cat = np.array(['cat', 'dog', 'cat'])

cross_function(cat, cont) = np.array([[1,0],[0,2],[3,0]])

最佳答案

在这里回答我自己的问题。涉及的步骤是:

  1. 对分类特征进行数字编码
    • 在图表中,因此可以在训练和服务中
  2. 对数值结果进行热编码
  3. 将其与连续变量相乘

代码:

import numpy as np
import tensorflow as tf

cont = np.array([1,2,3])
cat = np.array(['cat', 'dog', 'cat'])
categories = np.unique(cat)

def categorical_continuous_interaction(categorical_onehot, continuous):

cont = tf.expand_dims(continuous, 0)
return tf.transpose(tf.multiply(tf.transpose(categorical_onehot), cont))

def transformation_function(feature_dictionary, mapping_table):

continuous_feature = feature_dictionary['cont']

categorical_feature = mapping_table.lookup(feature_dictionary['cat'])
onehot = tf.one_hot(categorical_feature, categories.shape[0])
cross_feature = categorical_continuous_interaction(onehot, continuous_feature)

return {'feature_name': cross_feature}

def input_function(dataframe, label_key, ...):
# categorical mapping tables, these must be generated outside of the dataset
# transformation function but within the input function
mapping_table = tf.contrib.lookup.index_table_from_tensor(
mapping=tf.constant(categories),
num_oov_buckets=0,
default_value=-1
)

# Generate the dataset of a dictionary of all of the dataframes columns
dataset = tf.data.Dataset.from_tensor_slices(dict(dataframe))
# Convert to a dataset of tuples of dicts with the labels as one tuple
dataset = dataset.map(lambda x: split_label(x, label_key))
# Transform the features dict within the dataset
dataset = dataset.map(lambda features, labels: (transformation_function(
features, mapping_table=mapping_table), labels))

...

return dataset

def serving_input_fn():
# categorical mapping tables, these must be generated outside of the dataset
# transformation function but within the input function
mapping_table=tf.contrib.lookup.index_table_from_tensor(
mapping=tf.constant(categories),
num_oov_buckets=0,
default_value=-1
)
numeric_receiver_tensors = {
name: tf.placeholder(dtype=tf.float32, shape=[1], name=name+"_placeholder")
for name in numeric_feature_column_names
}
categorical_receiver_tensors = {
name: tf.placeholder(dtype=tf.string, shape=[1], name=name+"_placeholder")
for name in categorical_feature_column_names
}
receiver_tensors = {**numeric_receiver_tensors, **categorical_receiver_tensors}

features = transformation_function(receiver_tensors,
country_mapping_table=country_mapping_table)

return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)

关于python - Tensorflow 中的分类和连续交叉特征列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52831934/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com