- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一张图片(前面的男人)有 4 种不同的颜色(背景、头发、肤色和布料)。我使用 k-mean 和 k=4,图像被分割。现在我要做的是从图像中提取头发。
我使用canny edge detection来检测边缘,这有助于检测头发区域的点(红点指出)。现在,我想提取头发区域,正如红点指出的 k-mean 成员。可能吗?
或者有没有其他方法可以从人像中提取头发区域?
到目前为止完成的代码是:
import cv2
import numpy as np
image1 = cv2.imread('Test1.jpg')
#Resizing Image for fixed width
def image_resize(image1, width = None, height = None, inter =
cv2.INTER_AREA):
# initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image1.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image1
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image1, dim, interpolation = inter)
# return the resized image
return resized
img1 = image_resize(image1, width = 500)
cv2.imshow("Resized", img1)
cv2.waitKey(0)
#Detecting Edge of image
canny = cv2.Canny(img1, 100, 150)
cv2.imshow("Edge", canny)
cv2.waitKey(0)
coords = np.nonzero(canny)
topmost_y = np.min(coords[0])
#Blurring effect
img2 = cv2.medianBlur(img1, 5)
cv2.imshow("Blurred", img2)
cv2.waitKey(0)
#K-mean approach
Z = img2.reshape((-1,3))
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K=4
ret, label1, center1 = cv2.kmeans(Z, K, None,
criteria, 10,
cv2.KMEANS_RANDOM_CENTERS)
center1 = np.uint8(center1)
res1 = center1[label1.flatten()]
output1 = res1.reshape((img2.shape))
cv2.circle(output1, (250, topmost_y + 20), 5, (0,0,255), -1)
cv2.imshow("k = 4", output1)
cv2.waitKey(0)
cv2.destroyAllWindows()
图片:
, , , ,
最佳答案
根据您已有的代码,您只需多加几行即可获得头发所属簇的 xy 坐标。您还可以创建仅显示头发簇的图像:
# find the index of the cluster of the hair
mask = label1.reshape(output1.shape[:-1])
khair = mask[(topmost_y + 20, 250)]
# get a mask that's True at all of the indices of hair's group
hairmask = mask==khair
# get the hair's cluster's xy coordinates
xyhair = hairmask.nonzero()
# plot an image with only the hair's cluster on a white background
cv2.imwrite("khair.jpg", np.where(hairmask[..., None], img1, [255,255,255]))
这是头发簇的样子:
一旦你有了头发的簇,你就可以找到代表“只是头发”的 Blob 。以下是您的操作方式:
import scipy.ndimage as snd
# label all connected blobs in hairmask
bloblab = snd.label(hairmask, structure=np.ones((3,3)))[0]
# create a mask for only the hair
haironlymask = bloblab == bloblab[topmost_y + 20, 250]
# get an image with just the hair and then crop it
justhair = np.where(haironlymask[..., None], img1, [255,255,255])
nz = haironlymask.nonzero()
justhair = justhair[nz[0].min():nz[0].max(), nz[1].min():nz[1].max()]
# save the image of just the hair on a white background
cv2.imwrite("justhair.jpg", justhair)
这是你头发的图片:
关于python - 提取图像的 k 均值聚类的特定成员,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53848174/
我想获取每一行某些列的平均值。 我有此数据: w=c(5,6,7,8) x=c(1,2,3,4) y=c(1,2,3) length(y)=4 z=data.frame(w,x,y) 哪个返回:
类似于Numpy mean with condition我的问题将其扩展到对矩阵进行操作:计算矩阵 rdat 的行均值,跳过某些单元格 - 在本例中我使用 0 作为要跳过的单元格 - 就好像这些值从一
我有一个数据集,其中的列标题为产品名称、品牌、评级(1:5)、评论文本、评论有用性。我需要的是提出一个使用评论的推荐算法。我这里必须使用 python 进行编码。数据集采用.csv 格式。 为了识别数
我在 R^3 中有 n 个点,我想用 k 个椭球体或圆柱体覆盖它们(我不在乎;以更容易的为准)。我想大约最小化卷的并集。假设 n 是数万,k 是少数。开发时间(即简单性)比运行时更重要。 显然我可以运
我创建了一个计算均值、中位数和方差的程序。该程序最多接受 500 个输入。当有 500 个输入(我的数组的最大大小)时,我的所有方法都能完美运行。当输入较少时,只有“平均值”计算器起作用。这是整个程序
我已经完成了距离的计算并存储在推力 vector 中,例如,我有 2 个质心和 5 个数据点,我计算距离的方法是,对于每个质心,我首先计算 5 个数据点的距离并存储在阵列,然后与距离一维阵列中的另一个
下面的代码适用于每一列的总数,但我想计算出每个物种的平均值。 # Read data file into array data = numpy.genfromtxt('data/iris.csv',
我有一个独特的要求,我需要两个数据帧的公共(public)列(每行)的平均值。 我想不出这样做的 pythonic 方式。我知道我可以遍历两个数据框并找到公共(public)列,然后获取键匹配的行的平
我把它扔在那里,希望有人会尝试过这种荒谬的事情。我的目标是获取输入图像,并根据每个像素周围小窗口的标准差对其进行分割。基本上,这在数学上应该类似于高斯或盒式过滤器,因为它将应用于编译时(甚至运行时)用
有没有一种方法可以对函数进行向量化处理,使输出成为均值数组,其中每个均值代表输入数组的 0 索引值的均值?循环这个非常简单,但我正在努力尽可能高效。例如0 = 均值(0),1 = 均值(0-1),N
我正在尝试生成均值为 1 的指数分布随机数。我知道如何获取具有均值和标准差的正态分布随机数。我们可以通过normal(mean, standard_deviation)得到它,但是我不知道如何得到指数
我遇到了一段 Python 代码,它的内容类似于以下内容: a = np.array([1,2,3,4,5,6,7]) a array([1, 2, 3, 4, 5, 6, 7]) np.mean(a
我有两个数组。 x 是独立变量,counts 是 x 出现的次数,就像直方图一样。我知道我可以通过定义一个函数来计算平均值: def mean(x,counts): return np.sum
我有在纯 python 中计算平均速度的算法: speed = [...] avg_speed = 0.0 speed_count = 0 for i in speed: if i > 0:
我正在尝试计算扩展窗口的平均值,但是数据结构使得之前的答案至少缺少一点所需的内容(最接近的是:link)。 我的数据看起来像这样: Company TimePeriod IndividualID
我正在尝试实现 Kmeans python中的算法将使用cosine distance而不是欧几里得距离作为距离度量。 我知道使用不同的距离函数可能是致命的,应该小心使用。使用余弦距离作为度量迫使我改
有谁知道自组织映射 (SOM) 与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同的颜色之间的颜色空间存在重叠( http://ww
注意:我希望能得到更多有关如何处理和提出此类解决方案的指南,而不是解决方案本身。 我的系统中有一个非常关键的功能,它在特定上下文中显示为排名第一的分析热点。它处于 k-means 迭代的中间(已经是多
我有一个 pandas 数据框,看起来像这样: 给定行中的每个值要么是相同的数字,要么是 NaN。我想计算数据框中所有两列组合的平均值、中位数和获取计数,其中两列都不是 NaN。 例如,上述数据帧的结
任何人都知道如何调整简单的 K 均值算法来处理 this form 的数据集. 最佳答案 在仍然使用 k-means 的同时处理该形式的数据的最直接方法是使用 k-means 的内核化版本。 JSAT
我是一名优秀的程序员,十分优秀!