- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我目前正在使用基本的 LSTM 进行回归预测,我想实现因果 CNN,因为它在计算上应该更高效。
我正在努力弄清楚如何 reshape 我当前的数据以适应因果 CNN 单元并表示相同的数据/时间步长关系以及应该设置的扩张率。
我当前的数据是这样的:(示例数量、回溯、特征)
,这是我现在正在使用的 LSTM NN 的一个基本示例。
lookback = 20 # height -- timeseries
n_features = 5 # width -- features at each timestep
# Build an LSTM to perform regression on time series input/output data
model = Sequential()
model.add(LSTM(units=256, return_sequences=True, input_shape=(lookback, n_features)))
model.add(Activation('elu'))
model.add(LSTM(units=256, return_sequences=True))
model.add(Activation('elu'))
model.add(LSTM(units=256))
model.add(Activation('elu'))
model.add(Dense(units=1, activation='linear'))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train,
epochs=50, batch_size=64,
validation_data=(X_val, y_val),
verbose=1, shuffle=True)
prediction = model.predict(X_test)
然后我创建了一个新的 CNN 模型(虽然不是因果关系,因为 'causal'
填充只是 Conv1D
的一个选项,而不是 Conv2D
,根据 Keras 文档。如果我理解正确,通过具有多个功能,我需要使用 Conv2D
,而不是 Conv1D
但是如果我设置 Conv2D(padding= 'causal')
,我收到以下错误 - Invalid padding: causal
)
无论如何,我还能够使用新形状(示例数量、回溯、特征,1)
来拟合数据,并使用 Conv2D
运行以下模型图层:
lookback = 20 # height -- timeseries
n_features = 5 # width -- features at each timestep
model = Sequential()
model.add(Conv2D(128, 3, activation='elu', input_shape=(lookback, n_features, 1)))
model.add(MaxPool2D())
model.add(Conv2D(128, 3, activation='elu'))
model.add(MaxPool2D())
model.add(Flatten())
model.add(Dense(1, activation='linear'))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train,
epochs=50, batch_size=64,
validation_data=(X_val, y_val),
verbose=1, shuffle=True)
prediction = model.predict(X_test)
但是,根据我的理解,这不会将数据传播为因果关系,而只是将整个集合 (lookback, features, 1)
作为图像传播。
有什么方法可以 reshape 我的数据以适应具有多个特征的 Conv1D(padding='causal')
层,或者以某种方式运行与 Conv2D 相同的数据和输入形状
使用 'causal'
填充?
最佳答案
我相信您可以对任意数量的输入特征进行因果填充和膨胀。这是我建议的解决方案。
来自 Keras 文档:“此包装器将一层应用于输入的每个时间切片。输入应至少为 3D,索引一的维度将被视为时间维度。”
出于我们的目的,我们希望该层对每个特征应用“某物”,因此我们将特征移至时间索引,即 1。
同样相关的是 Conv1D documentation .
特别是关于 channel :“输入中维度的排序。“channels_last”对应于具有形状(批处理、步骤、 channel )的输入(Keras 中时间数据的默认格式)”
from tensorflow.python.keras import Sequential, backend
from tensorflow.python.keras.layers import GlobalMaxPool1D, Activation, MaxPool1D, Flatten, Conv1D, Reshape, TimeDistributed, InputLayer
backend.clear_session()
lookback = 20
n_features = 5
filters = 128
model = Sequential()
model.add(InputLayer(input_shape=(lookback, n_features, 1)))
# Causal layers are first applied to the features independently
model.add(Permute(dims=(2, 1))) # UPDATE must permute prior to adding new dim and reshap
model.add(Reshape(target_shape=(n_features, lookback, 1)))
# After reshape 5 input features are now treated as the temporal layer
# for the TimeDistributed layer
# When Conv1D is applied to each input feature, it thinks the shape of the layer is (20, 1)
# with the default "channels_last", therefore...
# 20 times steps is the temporal dimension
# 1 is the "channel", the new location for the feature maps
model.add(TimeDistributed(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**0)))
# You could add pooling here if you want.
# If you want interaction between features AND causal/dilation, then apply later
model.add(TimeDistributed(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**1)))
model.add(TimeDistributed(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**2)))
# Stack feature maps on top of each other so each time step can look at
# all features produce earlier
model.add(Permute(dims=(2, 1, 3))) # UPDATED to fix issue with reshape
model.add(Reshape(target_shape=(lookback, n_features * filters))) # (20 time steps, 5 features * 128 filters)
# Causal layers are applied to the 5 input features dependently
model.add(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**0))
model.add(MaxPool1D())
model.add(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**1))
model.add(MaxPool1D())
model.add(Conv1D(filters, 3, activation="elu", padding="causal", dilation_rate=2**2))
model.add(GlobalMaxPool1D())
model.add(Dense(units=1, activation='linear'))
model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
最终模型总结
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 5, 20, 1) 0
_________________________________________________________________
time_distributed (TimeDistri (None, 5, 20, 128) 512
_________________________________________________________________
time_distributed_1 (TimeDist (None, 5, 20, 128) 49280
_________________________________________________________________
time_distributed_2 (TimeDist (None, 5, 20, 128) 49280
_________________________________________________________________
reshape_1 (Reshape) (None, 20, 640) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None, 20, 128) 245888
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 10, 128) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None, 10, 128) 49280
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 5, 128) 0
_________________________________________________________________
conv1d_5 (Conv1D) (None, 5, 128) 49280
_________________________________________________________________
global_max_pooling1d (Global (None, 128) 0
_________________________________________________________________
dense (Dense) (None, 1) 129
=================================================================
Total params: 443,649
Trainable params: 443,649
Non-trainable params: 0
_________________________________________________________________
编辑:
“为什么需要 reshape 并使用 n_features 作为时间层”
n_features 最初需要位于时间层的原因是因为具有扩张和因果填充的 Conv1D 一次只能处理一个特征,并且因为 TimeDistributed 层的实现方式。
来自他们的文档 “考虑一批 32 个样本,其中每个样本是 10 个 16 维向量的序列。层的批输入形状是 (32, 10, 16),并且 input_shape ,不包括样本维度,是 (10, 16)。
然后您可以使用 TimeDistributed 将 Dense 层独立地应用到 10 个时间步中的每一个:“
通过将 TimeDistributed 层独立应用于每个特征,它减少了问题的维度,就好像只有一个特征(这很容易允许膨胀和因果填充)。有 5 个特征,首先需要分别处理它们。
在您进行修改后,此建议仍然适用。
无论 InputLayer 包含在第一层中还是单独包含在网络方面,都不应该有区别,因此如果可以解决问题,您绝对可以将其放在第一个 CNN 中。
关于python - 多特征因果CNN——Keras实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55850797/
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!