- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我需要按小时将观看者排序为直方图。我有一些使用 Matplotlib 来执行此操作的经验,但我找不到按小时对日期进行排序的最实用方法。
首先我从一个 JSON 文件中读取数据,然后将两个相关的数据类型存储在一个 pandas Dataframe 中,如下所示:
data = pd.read_json('data/data.json')
session_duration = pd.to_datetime(data.session_duration, unit='s').dt.time
time = pd.to_datetime(data.time, format='%H:%M:%S').dt.time
viewers = []
for x, y in zip(time, session_duration):
viewers.append({str(x):str(y)})
编辑:源文件看起来像这样,省略了不相关的部分。
{
"time": "00:00:09",
"session_duration": 91
},
{
"time": "00:00:16",
"session_duration": 29
},
{
"time": "00:00:33",
"session_duration": 102
},
{
"time": "00:00:35",
"session_duration": 203
}
请注意,session_duration 以秒为单位。
我必须区分两种类型的观众:
为此,我这样做:
import datetime
for element in viewers:
for time, session_duration in element.items():
if datetime.strptime(session_duration, '%H:%M:%S').time() >= datetime.strptime('00:01:00', '%H:%M:%S').time():
viewers_more_than_1min.append(element)
else:
viewers_less_than_1min.append(element)
因此,我的值在这样的字典中:{session_duration:time}其中,键是 session 结束的时间流,值是观看时间。
[{'00:00:09': '00:01:31'},
{'00:00:16': '00:00:29'},
{'00:00:33': '00:01:42'},
{'00:00:35': '00:03:23'},
{'00:00:36': '00:00:32'},
{'00:00:37': '00:04:47'},
{'00:00:47': '00:00:42'},
{'00:00:53': '00:00:44'},
{'00:00:56': '00:00:28'},
{'00:00:58': '00:01:17'},
{'00:01:04': '00:01:16'},
{'00:01:09': '00:00:46'},
{'00:01:29': '00:01:07'},
{'00:01:31': '00:01:02'},
{'00:01:32': '00:01:01'},
{'00:01:32': '00:00:36'},
{'00:01:37': '00:03:03'},
{'00:01:49': '00:00:57'},
{'00:02:01': '00:02:15'},
{'00:02:18': '00:01:16'}]
作为最后一步,我希望使用 Matplotlib 创建一个直方图,代表每小时来自上述两种观看者类型的每一种观看者计数。我假设它会是这样的:
import matplotlib.pyplot as plt
import datetime as dt
hours = [(dt.time(i).strftime('%H:00')) for i in range(24)]
plt.xlabel('Hour')
plt.ylabel('Viewer count')
plt.bar(hours, sorted_viewcount_byhour)
最佳答案
df = pd.read_json('data/data.json')
df['time'] = pd.to_datetime(df['time'])
#timedelta is a more appropriate data type for session_duration
df['session_duration'] = pd.to_timedelta(df['session_duration'], unit='s')
# Example filtering
df_short_duration = df[df['session_duration'].dt.total_seconds() <= 60]
# Example creating histogram
df_hist = df_short_duration.groupby(df['time'].dt.hour).count()
# Now just plot df_hist as a bar chart using matplotlib, might be something like plt.bar(df_hist.index, df_hist['count'])
关于python - 按小时将日期时间对象排序为 Pandas 数据框,然后使用 Matplotlib 可视化为直方图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56041988/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!