- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
对于这个图书馆来说,这似乎是一个非常重要的问题,到目前为止,我还没有看到一个决定性的答案,尽管在大多数情况下,答案似乎是“否”。
现在,任何使用 sklearn
中的 transformer
api 的方法都会返回一个 numpy
数组作为其结果。通常这很好,但是如果您将一个扩展或减少列数的多步骤过程链接在一起,没有一种清晰的方法来跟踪它们与原始列标签的关系,这将很难使用充分利用图书馆。
例如,这是我最近使用的一个片段,其中无法将新列映射到数据集中的原始列是一个很大的缺点:
numeric_columns = train.select_dtypes(include=np.number).columns.tolist()
cat_columns = train.select_dtypes(include=np.object).columns.tolist()
numeric_pipeline = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())
cat_pipeline = make_pipeline(SimpleImputer(strategy='most_frequent'), OneHotEncoder())
transformers = [
('num', numeric_pipeline, numeric_columns),
('cat', cat_pipeline, cat_columns)
]
combined_pipe = ColumnTransformer(transformers)
train_clean = combined_pipe.fit_transform(train)
test_clean = combined_pipe.transform(test)
在这个例子中,我使用 ColumnTransformer
拆分了我的数据集,然后使用 OneHotEncoder
添加了额外的列,所以我对列的排列与我开始的不一样出去。
如果我使用使用相同 API 的不同模块,我很容易会有不同的安排。 OrdinalEncoer
、select_k_best
等
如果您正在进行多步转换,是否有一种方法可以始终如一地查看新列与原始数据集的关系?
对此有广泛的讨论here ,但我认为还没有最终确定。
最佳答案
是的,您是对的,目前 sklearn
中还没有完全支持跟踪 feature_names。最初,决定在 numpy
数组级别将其保持为通用。可以跟踪 sklearn 估计器中添加的特征名称的最新进展 here .
无论如何,我们可以创建包装器来获取 ColumnTransformer
的特征名称。我不确定它是否可以捕获所有可能的 ColumnTransformers
类型。但至少,它可以解决您的问题。
Documentation of ColumnTransformer
:Notes
The order of the columns in the transformed feature matrix follows the order of how the columns are specified in the transformers list. Columns of the original feature matrix that are not specified are dropped from the resulting transformed feature matrix, unless specified in the passthrough keyword. Those columns specified with passthrough are added at the right to the output of the transformers.
试试这个!
import pandas as pd
import numpy as np
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder, MinMaxScaler
from sklearn.feature_extraction.text import _VectorizerMixin
from sklearn.feature_selection._base import SelectorMixin
from sklearn.feature_selection import SelectKBest
from sklearn.feature_extraction.text import CountVectorizer
train = pd.DataFrame({'age': [23,12, 12, np.nan],
'Gender': ['M','F', np.nan, 'F'],
'income': ['high','low','low','medium'],
'sales': [10000, 100020, 110000, 100],
'foo' : [1,0,0,1],
'text': ['I will test this',
'need to write more sentence',
'want to keep it simple',
'hope you got that these sentences are junk'],
'y': [0,1,1,1]})
numeric_columns = ['age']
cat_columns = ['Gender','income']
numeric_pipeline = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())
cat_pipeline = make_pipeline(SimpleImputer(strategy='most_frequent'), OneHotEncoder())
text_pipeline = make_pipeline(CountVectorizer(), SelectKBest(k=5))
transformers = [
('num', numeric_pipeline, numeric_columns),
('cat', cat_pipeline, cat_columns),
('text', text_pipeline, 'text'),
('simple_transformer', MinMaxScaler(), ['sales']),
]
combined_pipe = ColumnTransformer(
transformers, remainder='passthrough')
transformed_data = combined_pipe.fit_transform(
train.drop('y',1), train['y'])
def get_feature_out(estimator, feature_in):
if hasattr(estimator,'get_feature_names'):
if isinstance(estimator, _VectorizerMixin):
# handling all vectorizers
return [f'vec_{f}' \
for f in estimator.get_feature_names()]
else:
return estimator.get_feature_names(feature_in)
elif isinstance(estimator, SelectorMixin):
return np.array(feature_in)[estimator.get_support()]
else:
return feature_in
def get_ct_feature_names(ct):
# handles all estimators, pipelines inside ColumnTransfomer
# doesn't work when remainder =='passthrough'
# which requires the input column names.
output_features = []
for name, estimator, features in ct.transformers_:
if name!='remainder':
if isinstance(estimator, Pipeline):
current_features = features
for step in estimator:
current_features = get_feature_out(step, current_features)
features_out = current_features
else:
features_out = get_feature_out(estimator, features)
output_features.extend(features_out)
elif estimator=='passthrough':
output_features.extend(ct._feature_names_in[features])
return output_features
pd.DataFrame(transformed_data,
columns=get_ct_feature_names(combined_pipe))
关于python - 您能否使用 Sklearn 的 Transformer API 持续跟踪列标签?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57528350/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!