- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
抱歉,我没有足够的声誉来发布图片。
主要问题是它告诉我需要安装C编译器并重新安装gensim,否则火车会很慢,事实上它真的很慢。
我已经安装了 mingw32、Visual Studio 2008,并将 mingw32 环境变量添加到我的路径中。
有什么解决办法吗?
最佳答案
就像您一样,我安装了 mingw32 并将 MinGW\bin
添加到我的 PATH
变量中。然后,我使用 pip uninstall gensim
卸载了 gensim,并尝试使用 pip install gensim
重新安装。然而,这给出了相同的警告,所以我从 here 下载了 gensim-0.12.3.tar.gz
.我解压缩存档和内部文件,在文件夹中打开一个 cmd 窗口并运行 python setup.py install
来安装 gensim。现在我已经可以从输出中看到它可以看到 MinGW 安装。它安装正确,我可以在没有警告的情况下运行 gensim,而且速度更快。
关于python - Gensim 需要 C 编译器吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31870995/
比方说, word2vec.model 是我训练好的 word2vec 模型。当出现词汇外单词( oov_word )时,我计算向量 vec 使用 compute_vec(oov_word) 方法。现
我有一个现有的 gensim Doc2Vec 模型,我正在尝试对训练集以及模型进行迭代更新。 我拿新文件,照常进行预处理: stoplist = nltk.corpus.stopwords.words
使用 gensim.models.LdaMallet 有什么区别和 gensim.models.LdaModel ?我注意到参数并不完全相同,想知道什么时候应该使用一个而不是另一个? 最佳答案 TL;
我训练了一个 gensim.models.doc2vec.Doc2Vec 模型 d2v_model = Doc2Vec(sentences, size=100, window=8, min_count
我在 gensim 中有一个 word2vec 模型,训练了 98892 个文档。对于句子数组中不存在的任何给定句子(即我训练模型的集合),我需要用该句子更新模型,以便下次查询时给出一些结果。我这样做
我对 Gensim 很陌生,我正在尝试使用 word2vec 模型训练我的第一个模型。我看到所有参数都非常简单易懂,但是我不知道如何跟踪模型的损失以查看进度。此外,我希望能够在每个 epoch 之后获
请帮助我理解如何 TaggedDocument 之间的区别和 LabeledSentence的 gensim作品。我的最终目标是使用 Doc2Vec 进行文本分类模型和任何分类器。我正在关注这个 bl
尝试使用以下代码行在 gensim 中加载文件: model = gensim.models.KeyedVectors.load_word2vec_format(r"C:/Users/dan/txt_
我有一组用神经网络训练的嵌入,与 gensim 的 word2vec 无关。 我想使用这些嵌入作为 gensim.Word2vec 中的初始权重。 现在我看到的是,我可以model.load(SOME
我尝试使用 gensim 导入 import gensim 但出现以下错误 ImportError Traceback (most rece
我正在关注 https://radimrehurek.com/gensim/wiki.html#latent-dirichlet-allocation 上的“英语维基百科”gensim 教程 它解释了
我正在使用 24 核虚拟 CPU 和 100G 内存来训练 Doc2Vec 与 Gensim,但无论修改核数,CPU 的使用率始终在 200% 左右。 top htop 上面两张图显示了cpu使用率,
在将文本文档列表转换为语料库字典,然后使用以下方法将其转换为词袋模型之后: dictionary = gensim.corpora.Dictionary(docs) # docs is a list
我已经使用 Gensim 3.8.0 训练了一个 Word2Vec 模型。后来我尝试在 GCP 上使用使用 Gensim 4.0.o 的预训练模型。我使用了以下代码: model = KeyedVec
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我发现关于 word2vec.similarity() 的警告如下: >d:\python\lib\site-packages\gensim\matutils.py:737: FutureWarnin
我正在尝试使用版本为 3.6 的 Python 的 Gensim 库运行程序。 每当我运行该程序时,我都会遇到这些语句: C:\Python36\lib\site-packages\gensim-2.
我有一个通过 Java 中的 Mallet 训练的 LDA 模型。 Mallet LDA 模型生成了三个文件,这使我能够从文件运行模型并推断新文本的主题分布。 现在我想实现一个 Python 工具,它
我正在使用gensim doc2vec。我想知道是否有任何有效的方法来了解doc2vec的词汇量。一种粗略的方法是计算单词总数,但是如果数据量很大(1GB或更多),那么这将不是一种有效的方法。 最佳答
documentation有点不清楚如何将 fasttext 模型保存到磁盘 - 如何在参数中指定路径,我尝试这样做,但失败并出现错误 文档中的示例 >>> from gensim.test.util
我是一名优秀的程序员,十分优秀!