gpt4 book ai didi

python - Tensorflow:提取训练模型的特征

转载 作者:太空宇宙 更新时间:2023-11-03 11:25:21 24 4
gpt4 key购买 nike

我有一个 AlexNet 的实现。我有兴趣在完全连接的分类层之前提取经过训练的模型的特征向量

  1. 我想先训练模型(下面我给出了训练和测试的评估方法)。

  2. 如何在对训练/测试集中的所有图像进行分类之前获取最终输出特征向量列表(在前向传递期间)?

这是代码(完整版可用 https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3%20-%20Neural%20Networks/alexnet.py):

weights = {
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
'out': tf.Variable(tf.random_normal([1024, 10]))
}

biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([128])),
'bc3': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}

def alex_net(_X, _weights, _biases, _dropout):
# Reshape input picture


_X = tf.reshape(_X, shape=[-1, 28, 28, 1])

# Convolution Layer
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
# Max Pooling (down-sampling)
pool1 = max_pool('pool1', conv1, k=2)
# Apply Normalization
norm1 = norm('norm1', pool1, lsize=4)
# Apply Dropout
norm1 = tf.nn.dropout(norm1, _dropout)

# Convolution Layer
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
...
# right before feeding the fully connected, classification layers
# I'm interested in the vector after the weights
# are applied during the forward pass of a trained model.
dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
# Relu activation
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')

# Relu activation
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')

# Output, class prediction
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out


pred = alex_net(x, weights, biases, keep_prob)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
summary_writer = tf.train.SummaryWriter('/tmp/tensorflow_logs', graph_def=sess.graph_def)

while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " \
+ "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
# Calculate accuracy for 256 mnist test images
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.})

最佳答案

听起来你想要来自 alex_net() 的 dense2 的值?如果是这样,除了 out 之外,您还需要从 alex_net() 返回它,所以

return out

成为

return dense2, out

pred = alex_net(x, weights, biases, keep_prob)

成为

before_classification_layer, pred = alex_net(...)

然后,您可以在调用 sess.run() 时随时获取 before_classification_layer 值。请参阅 https://www.tensorflow.org/versions/0.6.0/api_docs/python/client.html#Session.run 中的 tf.Session.run .请注意,提取可能是一个列表,因此为了避免在示例代码中对图形进行两次评估,您可以这样做

# Calculate batch accuracy and loss
acc, loss = sess.run([accuracy, cost], feed_dict={...})

代替

# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={...})
# Calculate batch loss
loss = sess.run(cost, feed_dict={...})

(在需要时将 before_classification_layer 添加到该列表。)

关于python - Tensorflow:提取训练模型的特征,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35163371/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com