- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 Keras 为文本序列构建字符级自动编码器。当我编译模型时,出现有关张量形状的错误,如下所示。我打印出层规范以检查张量形状是否匹配,我发现问题可能出在最后一个 Lambda 层没有正确指定输出张量形状,但我想不通为什么不或如何指定它,但在 Keras 的文档或 Google 上没有找到任何关于它的信息。
错误输出下面也是代码的一部分,我在这里定义了我的模型。如果需要,用于澄清的整个脚本在这里:PasteBin .
(注意最后一层。)
0 <keras.engine.topology.InputLayer object at 0x7f5d290eb588> Input shape (None, 80) Output shape (None, 80)
1 <keras.layers.core.Lambda object at 0x7f5d35f25a20> Input shape (None, 80) Output shape (None, 80, 99)
2 <keras.layers.core.Dense object at 0x7f5d2dda52e8> Input shape (None, 80, 99) Output shape (None, 80, 256)
3 <keras.layers.core.Dropout object at 0x7f5d25004da0> Input shape (None, 80, 256) Output shape (None, 80, 256)
4 <keras.layers.core.Dense object at 0x7f5d2501ac18> Input shape (None, 80, 256) Output shape (None, 80, 128)
5 <keras.layers.core.Dense object at 0x7f5d24dc6cc0> Input shape (None, 80, 128) Output shape (None, 80, 64)
6 <keras.layers.core.Dense object at 0x7f5d24de1fd0> Input shape (None, 80, 64) Output shape (None, 80, 128)
7 <keras.layers.core.Dropout object at 0x7f5d24df4a20> Input shape (None, 80, 128) Output shape (None, 80, 128)
8 <keras.layers.core.Dense object at 0x7f5d24dfeb38> Input shape (None, 80, 128) Output shape (None, 80, 256)
9 <keras.layers.core.Lambda object at 0x7f5d24da6a20> Input shape (None, 80, 256) Output shape (None, 80)
----------------
0 Input Tensor("input_1:0", shape=(?, 80), dtype=int64) Output Tensor("input_1:0", shape=(?, 80), dtype=int64)
1 Input Tensor("input_1:0", shape=(?, 80), dtype=int64) Output Tensor("ToFloat:0", shape=(?, 80, 99), dtype=float32)
2 Input Tensor("ToFloat:0", shape=(?, 80, 99), dtype=float32) Output Tensor("Relu:0", shape=(?, 80, 256), dtype=float32)
3 Input Tensor("Relu:0", shape=(?, 80, 256), dtype=float32) Output Tensor("cond/Merge:0", shape=(?, 80, 256), dtype=float32)
4 Input Tensor("cond/Merge:0", shape=(?, 80, 256), dtype=float32) Output Tensor("Relu_1:0", shape=(?, 80, 128), dtype=float32)
5 Input Tensor("Relu_1:0", shape=(?, 80, 128), dtype=float32) Output Tensor("Relu_2:0", shape=(?, 80, 64), dtype=float32)
6 Input Tensor("Relu_2:0", shape=(?, 80, 64), dtype=float32) Output Tensor("Relu_3:0", shape=(?, 80, 128), dtype=float32)
7 Input Tensor("Relu_3:0", shape=(?, 80, 128), dtype=float32) Output Tensor("cond_1/Merge:0", shape=(?, 80, 128), dtype=float32)
8 Input Tensor("cond_1/Merge:0", shape=(?, 80, 128), dtype=float32) Output Tensor("truediv:0", shape=(?, 80, 256), dtype=float32)
9 Input Tensor("truediv:0", shape=(?, 80, 256), dtype=float32) Output Tensor("ToFloat_1:0", shape=(), dtype=float32)
----------------
Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_shape.py", line 578, in merge_with
self.assert_same_rank(other)
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_shape.py", line 624, in assert_same_rank
"Shapes %s and %s must have the same rank" % (self, other))
ValueError: Shapes (?, ?) and () must have the same rank
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/ops/nn_impl.py", line 153, in sigmoid_cross_entropy_with_logits
labels.get_shape().merge_with(logits.get_shape())
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_shape.py", line 585, in merge_with
(self, other))
ValueError: Shapes (?, ?) and () are not compatible
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "lstm.py", line 97, in <module>
autoencoder.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 667, in compile
sample_weight, mask)
File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 318, in weighted
score_array = fn(y_true, y_pred)
File "/usr/local/lib/python3.4/dist-packages/keras/objectives.py", line 45, in binary_crossentropy
return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
File "/usr/local/lib/python3.4/dist-packages/keras/backend/tensorflow_backend.py", line 2449, in binary_crossentropy
logits=output)
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/ops/nn_impl.py", line 156, in sigmoid_cross_entropy_with_logits
% (logits.get_shape(), labels.get_shape()))
ValueError: logits and labels must have the same shape (() vs (?, ?))
我使用这段代码构建了我的模型:
def binarize(x, sz):
return tf.to_float(tf.one_hot(x, sz, on_value=1, off_value=0, axis=-1))
def binarize_outputshape(in_shape):
return in_shape[0], in_shape[1], len(chars)
def debinarize(x):
return tf.to_float(np.argmax(x)) # get the character with most probability
def debinarize_outputshape(in_shape):
return in_shape[0], in_shape[1]
input_sentence = Input(shape=(max_title_len,), dtype='int64')
# make one-hot vectors out of sentences
one_hot = Lambda(binarize, output_shape=binarize_outputshape, arguments={'sz': len(chars)})(input_sentence)
# shape: max_title_len * chars = 80 * 55 = 4400
encoder = Dense(256, activation='relu')(one_hot)
encoder = Dropout(0.1)(encoder)
encoder = Dense(128, activation='relu')(encoder)
encoder = Dense(64, activation='relu')(encoder)
decoder = Dense(128, activation='relu')(encoder)
encoder = Dropout(0.1)(encoder)
decoder = Dense(256, activation='softmax')(decoder)
# transform back from one-hot vectors
decoder = Lambda(debinarize, output_shape=debinarize_outputshape)(decoder)
autoencoder = Model(input=input_sentence, output=decoder)
首先,我输入一个最多 80 个字符的文本序列,Lambda 层将每个字符转换为一个单热向量。最后,我想将单热向量转换回来,同时只取最大值作为解码字符。
作为Nassim Ben指出,问题出在函数 debinarize 上。将其更改为:
def debinarize(x):
return tf.to_float(tf.argmax(x, axis=0))
至少某种值被设置为输出张量的形状。虽然这个值有点奇怪,因为它是 (80, 256) 并且与输出形状 (None, 80) 不同。所有其他输出张量形状和输出形状相应地匹配(我想'?'和None或多或少意味着相同......)。更具体地说,Lambda 层现在看起来像这样:
<keras.layers.core.Lambda object at 0x7fafcc5a59b0> Input shape (None, 80, 256) Output shape (None, 80)
...
...
Input Tensor("truediv:0", shape=(?, 80, 256), dtype=float32) Output Tensor("ToFloat_1:0", shape=(80, 256), dtype=float32)
问题是,我希望输出张量形状为 (?, 80) 作为第一层的输入。除了 argmax 之外,我没有更改任何其他代码。
现在给出的错误是:
Traceback (most recent call last):
File "lstm.py", line 122, in <module>
callbacks=[earlystop_cb, check_cb, keras.callbacks.TensorBoard(log_dir='/tmp/autoencoder')])
File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 1168, in fit
self._make_train_function()
File "/usr/local/lib/python3.4/dist-packages/keras/engine/training.py", line 760, in _make_train_function
self.total_loss)
File "/usr/local/lib/python3.4/dist-packages/keras/optimizers.py", line 433, in get_updates
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/ops/math_ops.py", line 883, in binary_op_wrapper
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/ops.py", line 651, in convert_to_tensor
as_ref=False)
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/ops.py", line 716, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/constant_op.py", line 176, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/constant_op.py", line 165, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/usr/local/lib/python3.4/dist-packages/tensorflow/python/framework/tensor_util.py", line 360, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.
最佳答案
我认为它来自在张量上使用 numpy 函数。尝试使用 tf argmax 函数(我认为你要减少的轴是 1,不确定)
def debinarize(x):
return tf.to_float(tf.argmax(x,axis=2)) # get the character with most probability
这个有用吗?
关于python - Keras Lambda层没有输出张量形状,编译模型时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42630504/
可不可以命名为MVVM模型?因为View通过查看模型数据。 View 是否应该只与 ViewModelData 交互?我确实在某处读到正确的 MVVM 模型应该在 ViewModel 而不是 Mode
我正在阅读有关设计模式的文章,虽然作者们都认为观察者模式很酷,但在设计方面,每个人都在谈论 MVC。 我有点困惑,MVC 图不是循环的,代码流具有闭合拓扑不是很自然吗?为什么没有人谈论这种模式: mo
我正在开发一个 Sticky Notes 项目并在 WPF 中做 UI,显然将 MVVM 作为我的架构设计选择。我正在重新考虑我的模型、 View 和 View 模型应该是什么。 我有一个名为 Not
不要混淆:How can I convert List to Hashtable in C#? 我有一个模型列表,我想将它们组织成一个哈希表,以枚举作为键,模型列表(具有枚举的值)作为值。 publi
我只是花了一些时间阅读这些术语(我不经常使用它们,因为我们没有任何 MVC 应用程序,我通常只说“模型”),但我觉得根据上下文,这些意味着不同的东西: 实体 这很简单,它是数据库中的一行: 2) In
我想知道你们中是否有人知道一些很好的教程来解释大型应用程序的 MVVM。我发现关于 MVVM 的每个教程都只是基础知识解释(如何实现模型、 View 模型和 View ),但我对在应用程序页面之间传递
我想realm.delete() 我的 Realm 中除了一个模型之外的所有模型。有什么办法可以不列出所有这些吗? 也许是一种遍历 Realm 中当前存在的所有类型的方法? 最佳答案 您可以从您的 R
我正在尝试使用 alias 指令模拟一个 Eloquent 模型,如下所示: $transporter = \Mockery::mock('alias:' . Transporter::class)
我正在使用 stargazer 创建我的 plm 汇总表。 library(plm) library(pglm) data("Unions", package = "pglm") anb1 <- pl
我读了几篇与 ASP.NET 分层架构相关的文章和问题,但是读得太多后我有点困惑。 UI 层是在 ASP.NET MVC 中开发的,对于数据访问,我在项目中使用 EF。 我想通过一个例子来描述我的问题
我收到此消息错误: Inceptionv3.mlmodel: unable to read document 我下载了最新版本的 xcode。 9.4 版测试版 (9Q1004a) 最佳答案 您没有
(同样,一个 MVC 验证问题。我知道,我知道......) 我想使用 AutoMapper ( http://automapper.codeplex.com/ ) 来验证我的创建 View 中不在我
需要澄清一件事,现在我正在处理一个流程,其中我有两个 View 模型,一个依赖于另一个 View 模型,为了处理这件事,我尝试在我的基本 Activity 中注入(inject)两个 View 模型,
如果 WPF MVVM 应该没有代码,为什么在使用 ICommand 时,是否需要在 Window.xaml.cs 代码中实例化 DataContext 属性?我已经并排观看并关注了 YouTube
当我第一次听说 ASP.NET MVC 时,我认为这意味着应用程序由三个部分组成:模型、 View 和 Controller 。 然后我读到 NerdDinner并学习了存储库和 View 模型的方法
Platform : ubuntu 16.04 Python version: 3.5.2 mmdnn version : 0.2.5 Source framework with version :
我正在学习本教程:https://www.raywenderlich.com/160728/object-oriented-programming-swift ...并尝试对代码进行一些个人调整,看看
我正试图围绕 AngularJS。我很喜欢它,但一个核心概念似乎在逃避我——模型在哪里? 例如,如果我有一个显示多个交易列表的应用程序。一个列表向服务器查询匹配某些条件的分页事务集,另一个列表使用不同
我在为某个应用程序找出最佳方法时遇到了麻烦。我不太习惯取代旧 TLA(三层架构)的新架构,所以这就是我的来源。 在为我的应用程序(POCO 类,对吧??)设计模型和 DAL 时,我有以下疑问: 我的模
我有两个模型:Person 和 Department。每个人可以在一个部门工作。部门可以由多人管理。我不确定如何在 Django 模型中构建这种关系。 这是我不成功的尝试之一 [models.py]:
我是一名优秀的程序员,十分优秀!