gpt4 book ai didi

python - 大都会抽样

转载 作者:太空宇宙 更新时间:2023-11-03 11:18:27 24 4
gpt4 key购买 nike

我正在阅读一本名为 Bayesian Analysis in Python 的书.这本书主要侧重于 PyMC3 包,但对其背后的理论有点含糊,所以我很困惑。

假设我有这样的数据:

data = np.array([51.06, 55.12, 53.73, 50.24, 52.05, 56.40, 48.45, 52.34, 55.65, 51.49, 51.86, 63.43, 53.00, 56.09, 51.93, 52.31, 52.33, 57.48, 57.44, 55.14, 53.93, 54.62, 56.09, 68.58, 51.36, 55.47, 50.73, 51.94, 54.95, 50.39, 52.91, 51.5, 52.68, 47.72, 49.73, 51.82, 54.99, 52.84, 53.19, 54.52, 51.46, 53.73, 51.61, 49.81, 52.42, 54.3, 53.84, 53.16]) 

我正在看这样的模型:

enter image description here

使用 Metropolis Sampling ,我如何拟合估计 mu 和 sigma 的模型。

这是我根据阅读的内容猜测的伪代码:

M, S = 50, 1
G = 1

# These are priors right?
mu = stats.norm(loc=M, scale=S)
sigma = stats.halfnorm(scale=G)

target = stats.norm

steps = 1000

mu_samples = [50]
sigma_samples = [1]

for i in range(steps):
# proposed sample...
mu_i, sigma_i = mu.rvs(), sigma.rvs()

# Something happens here
# How do I calculate the likelidhood??
"..."
# some evaluation of a likelihood ratio??

a = "some"/"ratio"

acceptance_bar = np.random.random()

if a > acceptance_bar:
mu_samples.append(mu_i)
sigma_samples.append(sigma_i)

我错过了什么??

最佳答案

希望以下示例对您有所帮助。在这个例子中,我假设我们知道 sigma 的值,所以我们只有 mu 的先验值。

sigma = data.std() # we are assuming we know sigma

steps = 1000
mu_old = data.mean() # initial value, just a good guest
mu_samples = []

# we evaluate the prior for the initial point
prior_old = stats.norm(M, S).pdf(mu_old)
# we evaluate the likelihood for the initial point
likelihood_old = np.prod(stats.norm(mu_old, sigma).pdf(data))
# Bayes' theorem (omitting the denominator) for the initial point
post_old = prior_old * likelihood_old

for i in range(steps):
# proposal distribution, propose a new value from the old one
mu_new = stats.norm.rvs(mu_old, 0.1)

# we evaluate the prior
prior_new = stats.norm(M, S).pdf(mu_new)

# we evaluate the likelihood
likelihood_new = np.prod(stats.norm(mu_new, sigma).pdf(data))

# Bayes' theorem (omitting the denominator)
post_new = prior_new * likelihood_new

# the ratio of posteriors (we do not need to know the normalizing constant)
a = post_new / post_old

if np.random.random() < a:
mu_old = mu_new
post_old = post_new

mu_samples.append(mu_old)

注意事项:

  • 请注意,我已经定义了一个建议分布,在本例中是一个以 mu_old 为中心的高斯分布,标准差为 0.1(任意值)。在实践中,MH 的效率在很大程度上取决于提议分布,因此 PyMC3(以及 MH 的其他实际实现)使用一些启发式来调整提议分布。
  • 为简单起见,我在此示例中使用了 pdf,但实际上使用 logpdf 会很方便。这样可以在不改变结果的情况下避免下溢问题。
  • 可能性作为乘积计算
  • 你遗漏的比率是后验比率
  • 如果您不接受新建议值,则您(再次)保存旧值。

记得勾选this repository对于勘误表和代码的更新版本。更新代码与书中代码的主要区别在于,现在使用 PyMC3 运行模型的首选方法是仅使用 pm.sample() 并让 PyMC3 选择采样器和为你初始化点数。

关于python - 大都会抽样,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48123091/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com