有没有办法在 PyTorch 中区分梯度?
例如,我可以在 TensorFlow 中这样做:
from pylab import *
import tensorflow as tf
tf.reset_default_graph()
sess = tf.InteractiveSession()
def gradient_descent( loss_fnc, w, max_its, lr):
'''a gradient descent "RNN" '''
for k in range(max_its):
w = w - lr * tf.gradients( loss_fnc(w), w )[0]
return w
lr = tf.Variable( 0.0, dtype=tf.float32)
w = tf.Variable( tf.zeros(10), dtype=tf.float32)
reg = tf.Variable( 1.0, dtype=tf.float32 )
def loss_fnc(w):
return tf.reduce_sum((tf.ones(10) - w)**2) + reg * tf.reduce_sum( w**2 )
w_n = gradient_descent( loss_fnc, w, 10, lr )
sess.run( tf.initialize_all_variables())
# differentiate through the gradient_descent RNN with respnect to the initial weight
print(tf.gradients( w_n, w))
# differentiate through the gradient_descent RNN with respnect to the learning rate
print(tf.gradients( w_n, lr))
输出是
[<tf.Tensor 'gradients_10/AddN_9:0' shape=(10,) dtype=float32>]
[<tf.Tensor 'gradients_11/AddN_9:0' shape=() dtype=float32>]
我如何在 PyTorch 中做类似的事情?
你只需要使用函数 torch.autograd.grad
它与 tf.gradients
完全一样。
所以在 pytorch 中这将是:
from torch.autograd import Variable, grad
import torch
def gradient_descent( loss_fnc, w, max_its, lr):
'''a gradient descent "RNN" '''
for k in range(max_its):
w = w - lr * grad( loss_fnc(w), w )
return w
lr = Variable(torch.zeros(1), , requires_grad=True)
w = Variable( torch.zeros(10), requires_grad=True)
reg = Variable( torch.ones(1) , requires_grad=True)
def loss_fnc(w):
return torch.sum((Variable(torch.ones(10)) - w)**2) + reg * torch.sum( w**2 )
w_n = gradient_descent( loss_fnc, w, 10, lr )
# differentiate through the gradient_descent RNN with respnect to the initial weight
print(grad( w_n, w))
# differentiate through the gradient_descent RNN with respnect to the learning rate
print(grad( w_n, lr))
我是一名优秀的程序员,十分优秀!