gpt4 book ai didi

python - Keras 中局部连接层的维度

转载 作者:太空宇宙 更新时间:2023-11-03 10:51:24 26 4
gpt4 key购买 nike

我正在尝试使用 LocallyConnected1D 层(而不是 Dense)构建一个自动编码器,但我在理解这两种层类型的不同时遇到了很多麻烦——尤其是当它涉及到输出维度。

model = Sequential()
model.add(Reshape(input_shape=(input_size,), target_shape=(input_size,1))
model.add(LocallyConnected1D(encoded_size, kernel_size)
model.add(LocallyConnected1D(input_size, kernal_size_2, name="decoded_layer"))

这个模型编译得很好,但是当我去训练它时......

model.fit(x_train, x_train,
epochs=epochs,
batch_size=batch_size,
shuffle=True,
validation_data=(x_test, x_test))

其中 x_trainx_test 分别是形状为 (60000, 784) 和 (10000, 784) 的 numpy 数组。我在这一行收到以下错误:

ValueError: Error when checking target: expected decoded_layer to have 3 dimensions, but got array with shape (60000, 784)

进入 decoded_layer 的张量的形状不应该是 (60000, encoded_size, 1) 吗?

最佳答案

首先,您不必将 None 作为 input_shape 中的第一个维度。 Keras 自动假定还有另一个输入维度,即样本数。

其次,LocallyConnected1D 需要 3D 输入。这意味着您的 input_shape 应该是 (int, int) 的形式,keras 推断出 (None, int, int) 的形状

一个例子:

model = Sequential()
model.add(LocallyConnected1D(64, 3, input_shape=(10,10))) #takes a 10 by 10 array for each sample
model.add(LocallyConnected1D(32, 3))

如果您的数据形状不正确,您始终可以使用 Reshape() 层。假设您的输入是 (batch_size, 50) 的形状,因此每个样本都是 50 个元素的一维向量:

model = Sequential()
model.add(Reshape(input_shape=(50,), target_shape=(50,1)) #makes array 3D
model.add(LocallyConnected1D(64, 3))
model.add(LocallyConnected1D(32, 3))

关于python - Keras 中局部连接层的维度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49744112/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com