gpt4 book ai didi

python - 在新进程中执行 python 代码比在主进程中慢得多

转载 作者:太空宇宙 更新时间:2023-11-03 10:50:57 27 4
gpt4 key购买 nike

我开始在 python 中学习 multiprocessing 并且我注意到相同的代码在主进程上的执行速度比在使用 multiprocessing模块。

这是我的代码的简化示例,其中我首先在 main process 上执行代码,并打印前 10 次计算的时间和总计算的时间。然后在 new process 上执行相同的代码(这是一个长时间运行的进程,我可以随时发送 new_pattern)。

import multiprocessing
import random
import time


old_patterns = [[random.uniform(-1, 1) for _ in range(0, 10)] for _ in range(0, 2000)]
new_patterns = [[random.uniform(-1, 1) for _ in range(0, 10)] for _ in range(0, 100)]


new_pattern_for_processing = multiprocessing.Array('d', 10)
there_is_new_pattern = multiprocessing.Value('i', 0)
queue = multiprocessing.Queue()


def iterate_and_add(old_patterns, new_pattern):
for each_pattern in old_patterns:
sum = 0
for count in range(0, 10):
sum += each_pattern[count] + new_pattern[count]


print_count_main_process = 0
def patt_recognition_main_process(new_pattern):
global print_count_main_process
# START of same code on main process
start_main_process_one_patt = time.time()
iterate_and_add(old_patterns, new_pattern)
if print_count_main_process < 10:
print_count_main_process += 1
print("Time on main process one pattern:", time.time() - start_main_process_one_patt)
# END of same code on main process


def patt_recognition_new_process(old_patterns, new_pattern_on_new_proc, there_is_new_pattern, queue):
print_count = 0
while True:
if there_is_new_pattern.value:
#START of same code on new process
start_new_process_one_patt = time.time()
iterate_and_add(old_patterns, new_pattern_on_new_proc)
if print_count < 10:
print_count += 1
print("Time on new process one pattern:", time.time() - start_new_process_one_patt)
#END of same code on new process
queue.put("DONE")
there_is_new_pattern.value = 0


if __name__ == "__main__":
start_main_process = time.time()
for new_pattern in new_patterns:
patt_recognition_main_process(new_pattern)
print(".\n.\n.")
print("Total Time on main process:", time.time() - start_main_process)

print("\n###########################################################################\n")

start_new_process = time.time()
p1 = multiprocessing.Process(target=patt_recognition_new_process, args=(old_patterns, new_pattern_for_processing, there_is_new_pattern, queue))
p1.start()
for new_pattern in new_patterns:
for idx, n in enumerate(new_pattern):
new_pattern_for_processing[idx] = n
there_is_new_pattern.value = 1
while True:
msg = queue.get()
if msg == "DONE":
break
print(".\n.\n.")
print("Total Time on new process:", time.time()-start_new_process)

这是我的结果:

Time on main process one pattern: 0.0025289058685302734
Time on main process one pattern: 0.0020127296447753906
Time on main process one pattern: 0.002008199691772461
Time on main process one pattern: 0.002511262893676758
Time on main process one pattern: 0.0020067691802978516
Time on main process one pattern: 0.0020036697387695312
Time on main process one pattern: 0.0020072460174560547
Time on main process one pattern: 0.0019974708557128906
Time on main process one pattern: 0.001997232437133789
Time on main process one pattern: 0.0030074119567871094
.
.
.
Total Time on main process: 0.22810864448547363

###########################################################################

Time on new process one pattern: 0.03462791442871094
Time on new process one pattern: 0.03308463096618652
Time on new process one pattern: 0.034590721130371094
Time on new process one pattern: 0.033623456954956055
Time on new process one pattern: 0.03407788276672363
Time on new process one pattern: 0.03308820724487305
Time on new process one pattern: 0.03408670425415039
Time on new process one pattern: 0.0345921516418457
Time on new process one pattern: 0.03710794448852539
Time on new process one pattern: 0.03358912467956543
.
.
.
Total Time on new process: 4.0528037548065186

为什么执行时间相差这么大?

最佳答案

有点微妙,但问题在于

new_pattern_for_processing = multiprocessing.Array('d', 10)

它不保存 python float 对象,它保存原始字节,在本例中足以保存 10 个 8 字节机器级 double。当您读取或写入此数组时,python 必须将 float 转换为 double 或相反。如果您只读取或写入一次,这没什么大不了的,但您的代码会在循环中执行多次,并且这些转换占主导地位。

为了确认,我将机器级数组复制到 python float 列表一次,并让流程对其进行处理。现在它的速度和父级一样。我的更改仅在一个函数中

def patt_recognition_new_process(old_patterns, new_pattern_on_new_proc, there_is_new_pattern, queue):
print_count = 0
while True:
if there_is_new_pattern.value:
local_pattern = new_pattern_on_new_proc[:]
#START of same code on new process
start_new_process_one_patt = time.time()
#iterate_and_add(old_patterns, new_pattern_on_new_proc)
iterate_and_add(old_patterns, local_pattern)
if print_count < 10:
print_count += 1
print("Time on new process one pattern:", time.time() - start_new_process_one_patt)
#END of same code on new process
there_is_new_pattern.value = 0
queue.put("DONE")

关于python - 在新进程中执行 python 代码比在主进程中慢得多,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50343601/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com