- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在使用 GPU 进行一些计算以处理单词。最初,我使用一个 block (具有 500 个线程)来处理一个单词。要处理 100 个单词,我必须在主函数中将内核函数循环 100 次。
for (int i=0; i<100; i++)
kernel <<< 1, 500 >>> (length_of_word);
我的内核函数如下所示:
__global__ void kernel (int *dev_length)
{
int length = *dev_length;
while (length > 4)
{ //do something;
length -=4;
}
}
现在我想同时处理所有 100 个单词。
每个 block 仍将有 500 个线程,并处理一个单词(每个 block )。
dev_totalwordarray:存储单词的所有字符(一个接一个)
dev_length_array:存储每个单词的长度。
dev_accu_length:存储单词的累计长度(前面所有单词的总char)
dev_salt_ 是一个大小为 500 的数组,存储无符号整数。
因此,在我的主要功能中我有
kernel2 <<< 100, 500 >>> (dev_totalwordarray, dev_length_array, dev_accu_length, dev_salt_);
填充 cpu 数组:
for (int i=0; i<wordnumber; i++)
{
int length=0;
while (word_list_ptr_array[i][length]!=0)
{
length++;
}
actualwordlength2[i] = length;
}
从 cpu -> gpu 复制:
int* dev_array_of_word_length;
HANDLE_ERROR( cudaMalloc( (void**)&dev_array_of_word_length, 100 * sizeof(int) ) );
HANDLE_ERROR( cudaMemcpy( dev_array_of_word_length, actualwordlength2, 100 * sizeof(int),
我的函数内核现在看起来像这样:
__global__ void kernel2 (char* dev_totalwordarray, int *dev_length_array, int* dev_accu_length, unsigned int* dev_salt_)
{
tid = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int hash[N];
int length = dev_length_array[blockIdx.x];
while (tid < 50000)
{
const char* itr = &(dev_totalwordarray[dev_accu_length[blockIdx.x]]);
hash[tid] = dev_salt_[threadIdx.x];
unsigned int loop = 0;
while (length > 4)
{ const unsigned int& i1 = *(reinterpret_cast<const unsigned int*>(itr)); itr += sizeof(unsigned int);
const unsigned int& i2 = *(reinterpret_cast<const unsigned int*>(itr)); itr += sizeof(unsigned int);
hash[tid] ^= (hash[tid] << 7) ^ i1 * (hash[tid] >> 3) ^ (~((hash[tid] << 11) + (i2 ^ (hash[tid] >> 5))));
length -=4;
}
tid += blockDim.x * gridDim.x;
}
}
然而,kernel2 似乎根本不起作用。
这似乎是 while (length > 4)
造成的。
有人知道为什么吗?谢谢。
最佳答案
我不确定 while
是否是罪魁祸首,但我在您的代码中看到一些让我担心的事情:
hash[N]
表将按线程分配并在内核结束时丢弃。如果 N
很大(然后乘以线程总数),您可能会用完 GPU 内存。更不用说,访问 hash
几乎和访问全局内存一样慢。itr
值。是故意的吗?hash
表拷贝中的一个字段。hash[tid]
,其中 tid
是一个全局索引。请注意,即使 hash
是全局的,您也可能会遇到并发问题。并非网格中的所有 block 都会同时运行。虽然一个 block 将初始化 hash
的一部分,但另一个 block 甚至可能不会启动!关于c++ - CUDA 内核中的 While 循环失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13281415/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!