- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在使用我们组织内开发的大型 CUDA 矩阵库。我需要保存 CUDA RNG 的状态以获取长时间运行的模拟的快照,并能够在以后恢复它。这很简单,例如,python+numpy:
state = numpy.random.get_state()
# state is a tuple with 5 fields which can be pickled, etc.
...
numpy.random.set_state(state)
我似乎无法在 CUDA 主机 API 中找到等效功能。您可以设置种子和偏移量,但无法检索它来保存。设备 API 似乎提供了类似的东西,但是这个库使用主机 api,更改起来会很麻烦。
我正在考虑的 hack-ey 解决方案是跟踪对 RNG 的调用次数(设置种子时重置),并简单地重复调用 RNG 函数。但是,我不确定函数参数是否必须相同,例如矩阵形状等,使其达到相同的状态。同样,如果调用次数等于初始化RNG的偏移参数,这也可以,即如果我调用RNG 200次,我可以将偏移设置为200。但是,在python中,偏移每次调用状态可以增加超过 1,所以这也可能是错误的。
感谢任何有关如何解决此问题的见解!
最佳答案
对于CURAND Host API,我相信curandSetGeneratorOffset()可能对此有用。
这是来自 curand 主机 API 文档的修改示例:
$ cat t721.cu
/*
* This program uses the host CURAND API to generate 10
* pseudorandom floats. And then regenerate those same floats.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand.h>
#define CUDA_CALL(x) do { if((x)!=cudaSuccess) { \
printf("Error at %s:%d\n",__FILE__,__LINE__);\
return EXIT_FAILURE;}} while(0)
#define CURAND_CALL(x) do { if((x)!=CURAND_STATUS_SUCCESS) { \
printf("Error at %s:%d\n",__FILE__,__LINE__);\
return EXIT_FAILURE;}} while(0)
int main(int argc, char *argv[])
{
size_t n = 10;
size_t i;
curandGenerator_t gen;
float *devData, *hostData;
/* Allocate n floats on host */
hostData = (float *)calloc(n, sizeof(float));
/* Allocate n floats on device */
CUDA_CALL(cudaMalloc((void **)&devData, n*sizeof(float)));
/* Create pseudo-random number generator */
CURAND_CALL(curandCreateGenerator(&gen,
CURAND_RNG_PSEUDO_DEFAULT));
/* Set seed */
CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen,
1234ULL));
// generator offset = 0
/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen, devData, n));
// generator offset = n
/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen, devData, n));
// generator offset = 2n
/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostData, devData, n * sizeof(float),
cudaMemcpyDeviceToHost));
/* Show result */
for(i = 0; i < n; i++) {
printf("%1.4f ", hostData[i]);
}
printf("\n\n");
CURAND_CALL(curandSetGeneratorOffset(gen, n));
// generator offset = n
CURAND_CALL(curandGenerateUniform(gen, devData, n));
// generator offset = 2n
/* Copy device memory to host */
CUDA_CALL(cudaMemcpy(hostData, devData, n * sizeof(float),
cudaMemcpyDeviceToHost));
/* Show result */
for(i = 0; i < n; i++) {
printf("%1.4f ", hostData[i]);
}
printf("\n");
/* Cleanup */
CURAND_CALL(curandDestroyGenerator(gen));
CUDA_CALL(cudaFree(devData));
free(hostData);
return EXIT_SUCCESS;
}
$ nvcc -o t721 t721.cu -lcurand
$ ./t721
0.7816 0.2338 0.6791 0.2824 0.6299 0.1212 0.4333 0.3831 0.5136 0.2987
0.7816 0.2338 0.6791 0.2824 0.6299 0.1212 0.4333 0.3831 0.5136 0.2987
$
因此,您需要跟踪生成的随机数数量(不是 RNG 函数调用的数量)直到您执行检查点时为止,并保存它。
重启时,同样初始化生成器:
/* Create pseudo-random number generator */
CURAND_CALL(curandCreateGenerator(&gen,
CURAND_RNG_PSEUDO_DEFAULT));
/* Set seed */
CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen,
1234ULL));
然后按先前生成的值的数量 (n
) 前进:
CURAND_CALL(curandSetGeneratorOffset(gen, n));
关于python - 如何使用 CUDA CURAND 保存和恢复随机数生成器的状态?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29615130/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!