gpt4 book ai didi

c++ - CUDA 异常行为访问 vector

转载 作者:塔克拉玛干 更新时间:2023-11-03 07:18:06 25 4
gpt4 key购买 nike

我已经在 cuda 中实现了一个简单的 fft 程序。这是内核函数:

__global__
void fftKernel(cuComplex* dev_samples,
size_t length,
size_t llog,
Direction direction)
{
int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < length / 2) {

// First step, sorts data with bit reversing and compute new coefficients;
cuComplex c1 = dev_samples[bit_reverse(tid * 2) >> (32 - llog)];
cuComplex c2 = dev_samples[bit_reverse(tid * 2 + 1) >> (32 - llog)];

dev_samples[tid * 2] = cuCaddf(c1, c2);
dev_samples[tid * 2 + 1] = cuCsubf(c1, c2);

__syncthreads();

int k = tid * 2;
int block_start = tid * 2;

// Butterfly propagation
for (int i = 1, n = 4; i < llog; i++, n *= 2) {

int new_block_start = (k/n) * n;
if (new_block_start != block_start) {
block_start = new_block_start;
k -= n/4;
}

// We compute
// X(k) = E(k) + TF(k, N) * O(k)
// and
// X(k + N/2) = E(k) - TF(k, N) * O(k)
c1 = dev_samples[k];
c2 = cuCmulf(twiddle_factor(k % n, n, direction), dev_samples[k + n/2]);

dev_samples[k] = cuCaddf(c1, c2);
dev_samples[k + n / 2] = cuCsubf(c1, c2);

__syncthreads();
}

// Normalize if backward transforming
if (direction == Backward) {
dev_samples[tid].x /= length;
dev_samples[tid].y /= length;
dev_samples[tid + length/2].x /= length;
dev_samples[tid + length/2].y /= length;
}


// Strange behavior if using this snipset
// instead of the previous one
/*
if (direction == Backward) {
dev_samples[tid * 2].x /= length;
dev_samples[tid * 2].y /= length;
dev_samples[tid * 2 + 1].x /= length;
dev_samples[tid * 2 + 1].y /= length;
} */
}
}

现在,如果我使用这段代码,我会得到预期的输出,即

 (1.5, 0)
(-0.5, -0.5)
(-0.5, 0)
(-0.5, 0.5)

其中长度 = 4。但是如果我使用注释掉的部分,我会得到错误的结果

 (1.5, 0)
(-0.5, -0.5)
(1, 0) <--- wrong
(-0.5, 0.5)

这很奇怪,因为两个版本之间的变化只是 vector 的访问模式。在第一种情况下,我在每个线程中访问两个长度为/2 的元素。在第二种情况下,我访问了两个相邻的元素。这对我来说毫无意义...这可能是硬件问题吗?

编辑:使用 cuda-memcheck 运行时不会发出错误信号,并且...错误不会出现!

编辑:完整(非)工作拷贝:

#include <iostream>
#include <stdio.h>
#include <cuda.h>
#include <cuComplex.h>
#include <math_constants.h>

static void cuCheck( cudaError_t err,
const char *file,
int line ) {
if (err != cudaSuccess) {
printf( "%s in %s at line %d\n", cudaGetErrorString( err ),
file, line );
exit( EXIT_FAILURE );
}
}
#define CU_CHECK( err ) (cuCheck( err, __FILE__, __LINE__ ))

#define BLOCK_SIZE 512

enum Direction {
Forward,
Backward
};

/* Computes the in place fft of dev_samples.
* Retrun true in the fft has successfully computed, false otherwise.*/
bool fft(cuComplex* dev_samples, size_t length, Direction direction);

/* Returns true if n is a power of 2 and return the logarithm
* of the greater number smaller than n that is a power of 2
* in the variable pointed by exp */
__device__ __host__
bool isPowerOf2(int n, int* exp = NULL);

/* Computes the twiddle factor */
__device__
cuComplex twiddle_factor(int k, size_t n, Direction direction);
__device__
unsigned int bit_reverse(unsigned int i);

__global__
void fftKernel(cuComplex* dev_samples,
size_t length,
size_t llog,
Direction direction);

__device__ __host__
bool isPowerOf2(int n, int* exp)
{
int tmp_exp = 0;
int i;
for (i = 1; i < n; i *= 2, tmp_exp++);
if (exp) {
*exp = tmp_exp;
}
return (i == n);
}

bool fft(cuComplex* dev_samples, size_t length, Direction direction)
{
int llog;
if (!isPowerOf2(length, &llog))
return false;

int gridSize = max((int)length/2/BLOCK_SIZE, (int)1);
fftKernel<<<BLOCK_SIZE, gridSize>>>(dev_samples,
length,
llog,
direction);
CU_CHECK(cudaDeviceSynchronize());


return true;
}

__global__
void fftKernel(cuComplex* dev_samples,
size_t length,
size_t llog,
Direction direction)
{
int tid = threadIdx.x + blockDim.x * blockIdx.x;
if (tid < length / 2) {

// First step, sorts data with bit reversing and compute new coefficients;
cuComplex c1 = dev_samples[bit_reverse(tid * 2) >> (32 - llog)];
cuComplex c2 = dev_samples[bit_reverse(tid * 2 + 1) >> (32 - llog)];

__syncthreads();

dev_samples[tid * 2] = cuCaddf(c1, c2);
dev_samples[tid * 2 + 1] = cuCsubf(c1, c2);

__syncthreads();

int k = tid * 2;
int block_start = tid * 2;

// Butterfly propagation
for (int i = 1, n = 4; i < llog; i++, n *= 2) {

int new_block_start = (k/n) * n;
if (new_block_start != block_start) {
block_start = new_block_start;
k -= n/4;
}

// We compute
// X(k) = E(k) + TF(k, N) * O(k)
// and
// X(k + N/2) = E(k) - TF(k, N) * O(k)
c1 = dev_samples[k];
c2 = cuCmulf(twiddle_factor(k % n, n, direction), dev_samples[k + n/2]);

dev_samples[k] = cuCaddf(c1, c2);
dev_samples[k + n / 2] = cuCsubf(c1, c2);

__syncthreads();
}

//--------------------- ERROR HERE -----------------------
// Normalize if backward transforming
if (direction == Backward) {
dev_samples[tid * 2].x /= length;
dev_samples[tid * 2].y /= length;
dev_samples[tid * 2+ 1].x /= length;
dev_samples[tid * 2+ 1].y /= length;
}

// This works!!
/*if (direction == Backward) {
dev_samples[tid * 2].x /= length;
dev_samples[tid * 2].y /= length;
dev_samples[tid * 2+ 1].x /= length;
dev_samples[tid * 2+ 1].y /= length;
}*/
//---------------------------------------------------------
}
}

__device__
cuComplex twiddle_factor(int k, size_t n, Direction direction)
{
if (direction == Forward)
return make_cuFloatComplex(cos(-2.0*CUDART_PI_F*k/n),
sin(-2.0*CUDART_PI_F*k/n));
else
return make_cuFloatComplex(cos(2.0*CUDART_PI_F*k/n),
sin(2.0*CUDART_PI_F*k/n));
}

__device__
unsigned int bit_reverse(unsigned int i) {
register unsigned int mask = 0x55555555; // 0101...
i = ((i & mask) << 1) | ((i >> 1) & mask);
mask = 0x33333333; // 0011...
i = ((i & mask) << 2) | ((i >> 2) & mask);
mask = 0x0f0f0f0f; // 00001111...
i = ((i & mask) << 4) | ((i >> 4) & mask);
mask = 0x00ff00ff; // 0000000011111111...
i = ((i & mask) << 8) | ((i >> 8) & mask);
// 00000000000000001111111111111111 no need for mask
i = (i << 16) | (i >> 16);
return i;
}

#define SIGNAL_LENGTH 4

using namespace std;

int main(int argc, char** argv)
{
size_t mem_size = SIGNAL_LENGTH*sizeof(cuComplex);
cuComplex* signal = (cuComplex*)malloc(mem_size);
cuComplex* dev_signal;


for (int i = 0; i < SIGNAL_LENGTH; i++) {
signal[i].x = i;
signal[i].y = 0;
}

CU_CHECK(cudaMalloc((void**)&dev_signal, mem_size));
CU_CHECK(cudaMemcpy(dev_signal, signal, mem_size, cudaMemcpyHostToDevice));

fft(dev_signal, SIGNAL_LENGTH, Backward);

CU_CHECK(cudaMemcpy(signal, dev_signal, mem_size, cudaMemcpyDeviceToHost));

cout << "polito_Z_out:" << endl;
for (int i = 0; i < SIGNAL_LENGTH; i++) {
cout << " (" << signal[i].x << ", " << signal[i].y << ")" << endl;
}

cudaFree(dev_signal);
free(signal);
}

最佳答案

我很确定这是不正确的:

fftKernel<<<BLOCK_SIZE, gridSize>>>(...);

第一个内核配置参数应该是网格维度。第二个应该是 block 维度。

我能够重现您在发布的代码中指出的错误。当我反转这两个参数时:

fftKernel<<<gridSize, BLOCK_SIZE>>>(...);

错误消失了。

FWIW,synchcheck 工具确实会报告障碍错误,即使使用上述“修复”也是如此。 syncheck 是 CUDA 7 中的新功能,也是 requires a cc3.5 or higher device .

关于c++ - CUDA 异常行为访问 vector ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30530810/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com