- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
当我将两个 vector 相乘时
#include <iostream>
#include <fadiff.h>
#include <Eigen/Core>
int main(int argc, char *argv[])
{
using Scalar = fadbad::F<double>;
using VectorXs = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
VectorXs a(2);
VectorXs b(2);
Scalar c = a.transpose() * b;
std::cout << c.x() << std::endl;
}
我收到以下错误消息(ninja-build、gcc-7.1):
[1/2] Building CXX object CMakeFiles/example.dir/src/main.cc.o
FAILED: CMakeFiles/example.dir/src/main.cc.o
/usr/bin/c++ -I/home/username/include/boost-1.64.0 -I/home/username/include/eigen-3.3.4 -I/home/username/include/fadbad-2.1 -I/home/username/include/termcolor-6267b85 -g -MD -MT CMakeFiles/example.dir/src/main.cc.o -MF CMakeFiles/example.dir/src/main.cc.o.d -o CMakeFiles/example.dir/src/main.cc.o -c ../src/main.cc
../src/main.cc: In function ‘int main(int, char**)’:
../src/main.cc:13:30: error: ambiguous overload for ‘operator*’ (operand types are ‘Eigen::Transpose<Eigen::Matrix<fadbad::F<double>, -1, 1> >’ and ‘VectorXs {aka Eigen::Matrix<fadbad::F<double>, -1, 1>}’)
Scalar c = a.transpose() * b;
~~~~~~~~~~~~~~^~~
In file included from /home/username/include/eigen-3.3.4/Eigen/Core:72:0,
from ../src/main.cc:3:
/home/username/include/eigen-3.3.4/Eigen/src/Core/../plugins/CommonCwiseBinaryOps.h:50:29: note: candidate: typename Eigen::internal::enable_if<true, const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, T> > >::value>::type>, const Derived, const typename Eigen::internal::plain_constant_type<Derived, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, T> > >::value>::type>::type> >::type Eigen::MatrixBase<Derived>::operator*(const T&) const [with T = Eigen::Matrix<fadbad::F<double>, -1, 1>; Derived = Eigen::Transpose<Eigen::Matrix<fadbad::F<double>, -1, 1> >; typename Eigen::internal::enable_if<true,const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, T> > >::value>::type>, const Derived, const typenameEigen::internal::plain_constant_type<Derived, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::scalar_product_op<typename Eigen::internal::traits<T>::Scalar, T> > >::value>::type>::type> >::type = const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<fadbad::F<double>, fadbad::F<double> >, const Eigen::Transpose<Eigen::Matrix<fadbad::F<double>, -1, 1> >, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<fadbad::F<double> >, const Eigen::Matrix<fadbad::F<double>, 1, -1, 1, 1, -1> > >]
EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product)
^
/home/username/include/eigen-3.3.4/Eigen/src/Core/util/Macros.h:941:4: note: in definition of macro ‘EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT’
(METHOD)(const T& scalar) const { \
^~~~~~
/home/username/include/eigen-3.3.4/Eigen/src/Core/../plugins/CommonCwiseBinaryOps.h:50:1: note: in expansion of macro ‘EIGEN_MAKE_SCALAR_BINARY_OP’
EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product)
^~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /home/username/include/eigen-3.3.4/Eigen/Core:462:0,
from ../src/main.cc:3:
/home/username/include/eigen-3.3.4/Eigen/src/Core/GeneralProduct.h:387:1: note: candidate: const Eigen::Product<Derived, OtherDerived> Eigen::MatrixBase<Derived>::operator*(const Eigen::MatrixBase<OtherDerived>&) const [with OtherDerived = Eigen::Matrix<fadbad::F<double>, -1, 1>; Derived = Eigen::Transpose<Eigen::Matrix<fadbad::F<double>, -1, 1> >]
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
^~~~~~~~~~~~~~~~~~~
In file included from /home/username/include/eigen-3.3.4/Eigen/Core:72:0,
from ../src/main.cc:3:
/home/username/include/eigen-3.3.4/Eigen/src/Core/../plugins/CommonCwiseBinaryOps.h:50:29: note: candidate: typename Eigen::internal::enable_if<true, const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<T, typename Eigen::internal::traits<T>::Scalar, Eigen::internal::scalar_product_op<T, typename Eigen::internal::traits<T>::Scalar> > >::value>::type, typename Eigen::internal::traits<T>::Scalar>, const typename Eigen::internal::plain_constant_type<Derived, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<T, typename Eigen::internal::traits<T>::Scalar, Eigen::internal::scalar_product_op<T, typename Eigen::internal::traits<T>::Scalar> > >::value>::type>::type, const Derived> >::type Eigen::operator*(const T&, const StorageBaseType&) [with T = Eigen::Transpose<Eigen::Matrix<fadbad::F<double>, -1, 1> >; Derived = Eigen::Matrix<fadbad::F<double>, -1, 1>; typename Eigen::internal::enable_if<true, const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<T, typename Eigen::internal::traits<T>::Scalar, Eigen::internal::scalar_product_op<T, typename Eigen::internal::traits<T>::Scalar> > >::value>::type, typename Eigen::internal::traits<T>::Scalar>, const typename Eigen::internal::plain_constant_type<Derived, typename Eigen::internal::promote_scalar_arg<typename Eigen::internal::traits<T>::Scalar, T, Eigen::internal::has_ReturnType<Eigen::ScalarBinaryOpTraits<T, typename Eigen::internal::traits<T>::Scalar, Eigen::internal::scalar_product_op<T, typename Eigen::internal::traits<T>::Scalar> > >::value>::type>::type, const Derived> >::type = const Eigen::CwiseBinaryOp<Eigen::internal::scalar_product_op<fadbad::F<double>, fadbad::F<double> >, const Eigen::CwiseNullaryOp<Eigen::internal::scalar_constant_op<fadbad::F<double> >, const Eigen::Matrix<fadbad::F<double>, -1, 1> >, const Eigen::Matrix<fadbad::F<double>, -1, 1> >; Eigen::MatrixBase<Derived>::StorageBaseType = Eigen::MatrixBase<Eigen::Matrix<fadbad::F<double>, -1, 1> >]
EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product)
^
/home/username/include/eigen-3.3.4/Eigen/src/Core/util/Macros.h:950:4: note: in definition of macro ‘EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT’
(METHOD)(const T& scalar, const StorageBaseType& matrix) { \
^~~~~~
/home/username/include/eigen-3.3.4/Eigen/src/Core/../plugins/CommonCwiseBinaryOps.h:50:1: note: in expansion of macro ‘EIGEN_MAKE_SCALAR_BINARY_OP’
EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product)
^~~~~~~~~~~~~~~~~~~~~~~~~~~
ninja: build stopped: subcommand failed.
~~^~~
当我使用 double 作为 Scalar 类型时,它编译和运行时没有错误。
我该如何解决这个问题?
最佳答案
这是一个常见问题,我猜问题出在 fadbad
公开一个通用的隐式构造函数,使它好像可以从任何东西转换而来。更准确地说,std::is_convertible<X, fadbad>
因此对于任何类型都返回 true X
,包括 Eigen::Matrix< fadbad >
.在 a * b
,其中一个因素因此可以解释为兼容标量。
这必须在 fadbad
中修复,例如使用 SFINAE 仅为有效类型启用通用构造函数。
关于c++ - 带有 fadbad 的特征向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45675024/
设置 我希望能够定义一个特征,使得任何实现该特征的结构不仅必须实现函数,而且还必须为某些常量指定值。所以也许是这样的: trait MyTrait { const MY_CONST: u8;
在我的 Web 应用程序中,授权用户至少有 4 个“方面”:http session 相关数据、持久数据、facebook 数据、运行时业务数据。 我决定使用案例类组合而不是特征至少有两个原因: 性状
我正在尝试使用以下代码从类中获取完整数据成员的列表: import std.stdio; import std.traits; class D { static string[] integr
我正在尝试实现 From对于我的一种类型。它应该消耗任意长度的行(仅在运行时已知)并从行中获取数据。编译器提示 &[&str; 2]不是 &[&str] ,即它不能将固定大小的切片转换为任意长度的切片
有人可以请你这么好心,并指出一种提取拟合树中使用的列/特征的方法,使用如下代码: library(dplyr) library(caret) library(rpart) df % dplyr
假设我定义了一个 Group所有组操作的特征。是否可以创建一个包装器AGroup超过 Group无需手动派生所有操作? 基本上,我想要这个: #[derive (Copy, Debug, Clone,
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
我想让一个案例类扩展一个特征 以下是我的要求: 我需要为 child 使用案例类。这是一个硬性要求,因为 scopt ( https://github.com/scopt/scopt ) parent
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
不确定标题是否完全有意义,对此感到抱歉。我是机器学习新手,正在使用 Scikit 和决策树。 这就是我想做的;我想获取所有输入并包含一个独特的功能,即客户端 ID。现在,客户端 ID 是唯一的,无法以
我想读取具有 Eigen 的 MNIST 数据集,每个文件都由一个矩阵表示。我希望在运行时确定矩阵大小,因为训练集和测试集的大小不同。 Map> MNIST_dataset((uchar*)*_dat
在 MATLAB 中,我可以选择一个分散的子矩阵,例如: A = [1 ,2 ,3;4,5,6;7,8,9] A([1,3],[1,3]) = [1,3;7,9] 有没有用 Eigen 做到这一点的聪
我在执行 Into 时遇到问题Rust 中通用结构的特征。下面是我正在尝试做的简化版本: struct Wrapper { value: T } impl Into for Wrapper {
我有这段 matlab 代码,我想用 Eigen 编写: [V_K,D_K] = eig(K); d_k = diag(D_K); ind_k = find(d_k > 1e-8); d_k(ind_
我正在使用 Eigen C++ 矩阵库,我想获取对矩阵列的引用。文档说要使用 matrix_object.col(index),但这似乎返回了一个表示列的对象,而不是简单地引用原始矩阵对象中的列。我担
在乘以很多旋转矩阵之后,由于舍入问题(去正交化),最终结果可能不再是有效的旋转矩阵 重新正交化的一种方法是遵循以下步骤: 将旋转矩阵转换为轴角表示法 ( link ) 将轴角转换回旋转矩阵 ( lin
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
我是一名优秀的程序员,十分优秀!