- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在开发一款可以将纸上数字数字化的 Android 应用程序。我使用 native OpenCV 代码来查找图像上的数字。之后我想使用 OpenCV 的 dnn 模块来识别数字。可以在此处找到有关创建神经网络的不错教程:
https://www.youtube.com/watch?v=kFWKdLOxykE
mnist_convnet_graph.pbtxt 以此开头:
node {
name: "conv2d_1_input"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: -1
}
dim {
size: 28
}
dim {
size: 28
}
dim {
size: 1
}
}
}
}
}
所以输入是一张28x28的灰度图。
在本教程中,Java 代码用于使用神经网络。但是,由于速度,我想在 C++ 中使用它。我使用 cv::dnn::Net Dnn.readNetFromTensorflow(String model, String config); 成功加载了模型,并将对象传递到 NDK 端。我使用以下内容为神经网络创建输入:
// The part of the image, we are interested in.
Rect roi(static_cast<int>(w), static_cast<int>(h),
static_cast<int>(w), static_cast<int>(h));
Mat cropped(image_gray, roi);
// Resize image to 28x28.
Mat resized;
cv::resize(cropped, resized, Size(28,28));
之后,转发应该可以工作了:
const double IN_SCALE_FACTOR = 0.003921; // 1.0/255.0
Mat blob = dnn::blobFromImage(resized, IN_SCALE_FACTOR, Size(28,28));
net.setInput(blob);
Mat detections = net.forward();
其中 net 是传递的 cv::dnn::Net 对象。但是 net.forward() 命令失败并给出:
OpenCV(3.4.5) 错误:虚拟 bool cv::dnn::experimental_dnn_34_v11::DataLayer::getMemoryShapes(const std::vector >&, int, std::vector >&, std::vector >&) const,文件/build/3_4_pack-android/opencv/modules/dnn/src/dnn.cpp,第 681 行
我也试过:
但这些都没有导致解决方案。有人对此有解决方案吗?任何建议或想法将不胜感激。
最佳答案
好的,我设法解决了我的问题。
首先,我意识到 .pb
和 .pbtxt
文件在错误的目录中并得到 2 Failed to upload a file
信息日志。
将文件放入正确的目录后,我遇到了问题:
error: (-215:Assertion failed) const_layers.insert(std::make_pair(name, li)).second in function 'void cv::dnn::experimental_dnn_34_v11::{anonymous}::addConstNodes(opencv_tensorflow::GraphDef&, std::map<cv::String, int>&, std::set<cv::String>&)'
作为Dmitry Kurtaev建议here , 我删除了 .pbtxt
来自 Dnn.readNetFromTensorflow
.之后我得到了错误:
OpenCV(3.4.5) Error: Unspecified error (Can't create layer "flatten_1/Shape" of type "Shape") in cv::Ptr<cv::dnn::experimental_dnn_34_v11::Layer> cv::dnn::experimental_dnn_34_v11::LayerData::getLayerInstance(), file /build/3_4_pack-android/opencv/modules/dnn/src/dnn.cpp, line 513
这使我找到了一个链接,我在 Dmitry Kurtaev 中找到了该链接的评论 here .在对 .pbtxt
进行建议的修改(删除 Const 节点、修改和删除展平节点)后文件,最后我没有出错,并成功运行了神经网络。
注意:添加K.backend.set_learning_phase(0)
在创建模型之前,也很有用。
关于android - 使用 OpenCV 在 Android 上使用神经网络进行灰度图像分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54277939/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!