- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
所以,我真的不懂大 O 符号。我的任务是确定此代码段的“O 值”。
for (int count =1; count < n; count++) // Runs n times, so linear, or O(N)
{
int count2 = 1; // Declares an integer, so constant, O(1)
while (count2 < count) // Here's where I get confused. I recognize that it is a nested loop, but does that make it O(N^2)?
{
count2 = count2 * 2; // I would expect this to be constant as well, O(N)
}
}
最佳答案
O(f(n))=g(n)
这意味着对于某些值 k
,f(n)>g(n)
其中 n>k
。这给出了函数 g(n)
的上限。
当要求您为某些代码查找 Big O
时,
1) 尝试根据 n
计算执行的计算次数,从而得到 g(n)
。
2) 现在尝试估计g(n)
的上限函数。这就是您的答案。
让我们将此过程应用于您的代码。
让我们数一数计算的次数。 声明
和乘以 2
语句需要 O(1)
时间。但是这些是重复执行的。我们需要找出它们被执行了多少次。
外层循环执行n
次。因此第一个语句执行了 n
次。现在内循环执行的次数取决于 n
的值。对于给定的 n
值,它执行 logn
次。
现在让我们计算执行的计算总数,
log(1) + log(2) + log(3) +.... log(n) + n
请注意,最后一个 n
用于第一条语句。简化上述系列我们得到:
= log(1*2*3*...n) + n
= log(n!) + n
我们有
g(n)=log(n!) + n
让我们猜猜 log(n!)
的上限。
因为,
1.2.3.4...n < n.n.n...(n times)
因此,
log(n!) < log(n^n) for n>1
暗示
log(n!) = O(nlogn).
如果你想要一个正式的证明,检查this出去。由于 nlogn
比 n
增长得更快,因此我们有:
O(nlogn + n) = O(nlogn)
因此你的最终答案是O(nlogn)
。
关于c++ - 对确定 Big-O 表示法感到困惑?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19461794/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!