- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我一直在尝试编译加速度计的代码,该代码可从两个来源获得,但在 github 上引用相同的代码:
https://github.com/ayildirim/OpenVR
https://github.com/ptrbrtz/razor-9dof-ahrs/
这两个来源都包含以下 arduino 代码(c++):
#define HW__VERSION_CODE 10736 // SparkFun "9DOF Razor IMU" version "SEN-10736" (HMC5883L magnetometer)
// OUTPUT OPTIONS
/*****************************************************************/
// Set your serial port baud rate used to send out data here!
#define OUTPUT__BAUD_RATE 57600
// Sensor data output interval in milliseconds
// This may not work, if faster than 20ms (=50Hz)
// Code is tuned for 20ms, so better leave it like that
#define OUTPUT__DATA_INTERVAL 20 // in milliseconds
// Output mode definitions (do not change)
#define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration
#define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes
// Output format definitions (do not change)
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
#define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float
// Select your startup output mode and format here!
int output_mode = OUTPUT__MODE_ANGLES;
int output_format = OUTPUT__FORMAT_TEXT;
// Select if serial continuous streaming output is enabled per default on startup.
#define OUTPUT__STARTUP_STREAM_ON true // true or false
// If set true, an error message will be output if we fail to read sensor data.
// Message format: "!ERR: reading <sensor>", followed by "\r\n".
boolean output_errors = false; // true or false
// Bluetooth
// You can set this to true, if you have a Rovering Networks Bluetooth Module attached.
// The connect/disconnect message prefix of the module has to be set to "#".
// (Refer to manual, it can be set like this: SO,#)
// When using this, streaming output will only be enabled as long as we're connected. That way
// receiver and sender are synchronzed easily just by connecting/disconnecting.
// It is not necessary to set this! It just makes life easier when writing code for
// the receiving side. The Processing test sketch also works without setting this.
// NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect!
#define OUTPUT__HAS_RN_BLUETOOTH false // true or false
// SENSOR CALIBRATION
/*****************************************************************/
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
// Put MIN/MAX and OFFSET readings for your board here!
// Accelerometer
// "accel x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
#define ACCEL_X_MIN ((float) -289)
#define ACCEL_X_MAX ((float) 294)
#define ACCEL_Y_MIN ((float) -268)
#define ACCEL_Y_MAX ((float) 288)
#define ACCEL_Z_MIN ((float) -294)
#define ACCEL_Z_MAX ((float) 269)
// Magnetometer (standard calibration)
// "magn x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
//#define MAGN_X_MIN ((float) -600)
//#define MAGN_X_MAX ((float) 600)
//#define MAGN_Y_MIN ((float) -600)
//#define MAGN_Y_MAX ((float) 600)
//#define MAGN_Z_MIN ((float) -600)
//#define MAGN_Z_MAX ((float) 600)
// Magnetometer (extended calibration)
// Uncommend to use extended magnetometer calibration (compensates hard & soft iron errors)
#define CALIBRATION__MAGN_USE_EXTENDED true
const float magn_ellipsoid_center[3] = {
3.80526, -16.4455, 87.4052};
const float magn_ellipsoid_transform[3][3] = {
{
0.970991, 0.00583310, -0.00265756 }
, {
0.00583310, 0.952958, 2.76726e-05 }
, {
-0.00265756, 2.76726e-05, 0.999751 }
};
// Gyroscope
// "gyro x,y,z (current/average) = .../OFFSET_X .../OFFSET_Y .../OFFSET_Z
#define GYRO_AVERAGE_OFFSET_X ((float) 23.85)
#define GYRO_AVERAGE_OFFSET_Y ((float) -53.41)
#define GYRO_AVERAGE_OFFSET_Z ((float) -15.32)
/*
// Calibration example:
// "accel x,y,z (min/max) = -278.00/270.00 -254.00/284.00 -294.00/235.00"
#define ACCEL_X_MIN ((float) -278)
#define ACCEL_X_MAX ((float) 270)
#define ACCEL_Y_MIN ((float) -254)
#define ACCEL_Y_MAX ((float) 284)
#define ACCEL_Z_MIN ((float) -294)
#define ACCEL_Z_MAX ((float) 235)
// "magn x,y,z (min/max) = -511.00/581.00 -516.00/568.00 -489.00/486.00"
//#define MAGN_X_MIN ((float) -511)
//#define MAGN_X_MAX ((float) 581)
//#define MAGN_Y_MIN ((float) -516)
//#define MAGN_Y_MAX ((float) 568)
//#define MAGN_Z_MIN ((float) -489)
//#define MAGN_Z_MAX ((float) 486)
// Extended magn
#define CALIBRATION__MAGN_USE_EXTENDED true
const float magn_ellipsoid_center[3] = {91.5, -13.5, -48.1};
const float magn_ellipsoid_transform[3][3] = {{0.902, -0.00354, 0.000636}, {-0.00354, 0.9, -0.00599}, {0.000636, -0.00599, 1}};
// Extended magn (with Sennheiser HD 485 headphones)
//#define CALIBRATION__MAGN_USE_EXTENDED true
//const float magn_ellipsoid_center[3] = {72.3360, 23.0954, 53.6261};
//const float magn_ellipsoid_transform[3][3] = {{0.879685, 0.000540833, -0.0106054}, {0.000540833, 0.891086, -0.0130338}, {-0.0106054, -0.0130338, 0.997494}};
//"gyro x,y,z (current/average) = -32.00/-34.82 102.00/100.41 -16.00/-16.38"
#define GYRO_AVERAGE_OFFSET_X ((float) -34.82)
#define GYRO_AVERAGE_OFFSET_Y ((float) 100.41)
#define GYRO_AVERAGE_OFFSET_Z ((float) -16.38)
*/
// DEBUG OPTIONS
/*****************************************************************/
// When set to true, gyro drift correction will not be applied
#define DEBUG__NO_DRIFT_CORRECTION false
// Print elapsed time after each I/O loop
#define DEBUG__PRINT_LOOP_TIME false
/*****************************************************************/
/****************** END OF USER SETUP AREA! *********************/
/*****************************************************************/
// Check if hardware version code is defined
#ifndef HW__VERSION_CODE
// Generate compile error
#error YOU HAVE TO SELECT THE HARDWARE YOU ARE USING! See "HARDWARE OPTIONS" in "USER SETUP AREA" at top of Razor_AHRS.pde (or .ino)!
#endif
#include <Wire.h>
#include <Compass.h>
#include <DCM.h>
#include <Math.h>
#include <Output.h>
#include <Sensors.h>
// Sensor calibration scale and offset values
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f)
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f)
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f)
#define ACCEL_X_SCALE (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET))
#define ACCEL_Y_SCALE (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET))
#define ACCEL_Z_SCALE (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET))
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET))
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET))
// Gain for gyroscope (ITG-3200)
#define GYRO_GAIN 0.06957 // Same gain on all axes
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second
// DCM parameters
#define Kp_ROLLPITCH 0.02f
#define Ki_ROLLPITCH 0.00002f
#define Kp_YAW 1.2f
#define Ki_YAW 0.00002f
// Stuff
#define STATUS_LED_PIN 13 // Pin number of status LED
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
#define TO_RAD(x) (x * 0.01745329252) // *pi/180
#define TO_DEG(x) (x * 57.2957795131) // *180/pi
// Sensor variables
float accel[3]; // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
float accel_min[3];
float accel_max[3];
float magnetom[3];
float magnetom_min[3];
float magnetom_max[3];
float magnetom_tmp[3];
float gyro[3];
float gyro_average[3];
int gyro_num_samples = 0;
// DCM variables
float MAG_Heading;
float Accel_Vector[3]= {
0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {
0, 0, 0}; // Store the gyros turn rate in a vector
float Omega_Vector[3]= {
0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {
0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {
0, 0, 0}; // Omega Integrator
float Omega[3]= {
0, 0, 0};
float errorRollPitch[3] = {
0, 0, 0};
float errorYaw[3] = {
0, 0, 0};
float DCM_Matrix[3][3] = {
{
1, 0, 0 }
, {
0, 1, 0 }
, {
0, 0, 1 }
};
float Update_Matrix[3][3] = {
{
0, 1, 2 }
, {
3, 4, 5 }
, {
6, 7, 8 }
};
float Temporary_Matrix[3][3] = {
{
0, 0, 0 }
, {
0, 0, 0 }
, {
0, 0, 0 }
};
// Euler angles
float yaw;
float pitch;
float roll;
// DCM timing in the main loop
unsigned long timestamp;
unsigned long timestamp_old;
float G_Dt; // Integration time for DCM algorithm
// More output-state variables
boolean output_stream_on;
boolean output_single_on;
int curr_calibration_sensor = 0;
boolean reset_calibration_session_flag = true;
int num_accel_errors = 0;
int num_magn_errors = 0;
int num_gyro_errors = 0;
void read_sensors() {
Read_Gyro(); // Read gyroscope
Read_Accel(); // Read accelerometer
Read_Magn(); // Read magnetometer
}
// Read every sensor and record a time stamp
// Init DCM with unfiltered orientation
// TODO re-init global vars?
void reset_sensor_fusion() {
float temp1[3];
float temp2[3];
float xAxis[] = {
1.0f, 0.0f, 0.0f };
read_sensors();
timestamp = millis();
// GET PITCH
// Using y-z-plane-component/x-component of gravity vector
pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
// GET ROLL
// Compensate pitch of gravity vector
Vector_Cross_Product(temp1, accel, xAxis);
Vector_Cross_Product(temp2, xAxis, temp1);
// Normally using x-z-plane-component/y-component of compensated gravity vector
// roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2]));
// Since we compensated for pitch, x-z-plane-component equals z-component:
roll = atan2(temp2[1], temp2[2]);
// GET YAW
Compass_Heading();
yaw = MAG_Heading;
// Init rotation matrix
init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
}
// Apply calibration to raw sensor readings
void compensate_sensor_errors() {
// Compensate accelerometer error
accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;
// Compensate magnetometer error
#if CALIBRATION__MAGN_USE_EXTENDED == true
for (int i = 0; i < 3; i++)
magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
#else
magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
#endif
// Compensate gyroscope error
gyro[0] -= GYRO_AVERAGE_OFFSET_X;
gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
}
// Reset calibration session if reset_calibration_session_flag is set
void check_reset_calibration_session()
{
// Raw sensor values have to be read already, but no error compensation applied
// Reset this calibration session?
if (!reset_calibration_session_flag) return;
// Reset acc and mag calibration variables
for (int i = 0; i < 3; i++) {
accel_min[i] = accel_max[i] = accel[i];
magnetom_min[i] = magnetom_max[i] = magnetom[i];
}
// Reset gyro calibration variables
gyro_num_samples = 0; // Reset gyro calibration averaging
gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
reset_calibration_session_flag = false;
}
void turn_output_stream_on()
{
output_stream_on = true;
digitalWrite(STATUS_LED_PIN, HIGH);
}
void turn_output_stream_off()
{
output_stream_on = false;
digitalWrite(STATUS_LED_PIN, LOW);
}
// Blocks until another byte is available on serial port
char readChar()
{
while (Serial.available() < 1) {
} // Block
return Serial.read();
}
void setup()
{
// Init serial output
Serial.begin(OUTPUT__BAUD_RATE);
// Init status LED
pinMode (STATUS_LED_PIN, OUTPUT);
digitalWrite(STATUS_LED_PIN, LOW);
// Init sensors
delay(50); // Give sensors enough time to start
I2C_Init();
Accel_Init();
Magn_Init();
Gyro_Init();
// Read sensors, init DCM algorithm
delay(20); // Give sensors enough time to collect data
reset_sensor_fusion();
// Init output
#if (OUTPUT__HAS_RN_BLUETOOTH == true) || (OUTPUT__STARTUP_STREAM_ON == false)
turn_output_stream_off();
#else
turn_output_stream_on();
#endif
}
// Main loop
void loop()
{
// Read incoming control messages
if (Serial.available() >= 2)
{
if (Serial.read() == '#') // Start of new control message
{
int command = Serial.read(); // Commands
if (command == 'f') // request one output _f_rame
output_single_on = true;
else if (command == 's') // _s_ynch request
{
// Read ID
byte id[2];
id[0] = readChar();
id[1] = readChar();
// Reply with synch message
Serial.print("#SYNCH");
Serial.write(id, 2);
Serial.println();
}
else if (command == 'o') // Set _o_utput mode
{
char output_param = readChar();
if (output_param == 'n') // Calibrate _n_ext sensor
{
curr_calibration_sensor = (curr_calibration_sensor + 1) % 3;
reset_calibration_session_flag = true;
}
else if (output_param == 't') // Output angles as _t_ext
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_TEXT;
}
else if (output_param == 'b') // Output angles in _b_inary format
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == 'c') // Go to _c_alibration mode
{
output_mode = OUTPUT__MODE_CALIBRATE_SENSORS;
reset_calibration_session_flag = true;
}
else if (output_param == 's') // Output _s_ensor values
{
char values_param = readChar();
char format_param = readChar();
if (values_param == 'r') // Output _r_aw sensor values
output_mode = OUTPUT__MODE_SENSORS_RAW;
else if (values_param == 'c') // Output _c_alibrated sensor values
output_mode = OUTPUT__MODE_SENSORS_CALIB;
else if (values_param == 'b') // Output _b_oth sensor values (raw and calibrated)
output_mode = OUTPUT__MODE_SENSORS_BOTH;
if (format_param == 't') // Output values as _t_text
output_format = OUTPUT__FORMAT_TEXT;
else if (format_param == 'b') // Output values in _b_inary format
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == '0') // Disable continuous streaming output
{
turn_output_stream_off();
reset_calibration_session_flag = true;
}
else if (output_param == '1') // Enable continuous streaming output
{
reset_calibration_session_flag = true;
turn_output_stream_on();
}
else if (output_param == 'e') // _e_rror output settings
{
char error_param = readChar();
if (error_param == '0') output_errors = false;
else if (error_param == '1') output_errors = true;
else if (error_param == 'c') // get error count
{
Serial.print("#AMG-ERR:");
Serial.print(num_accel_errors);
Serial.print(",");
Serial.print(num_magn_errors);
Serial.print(",");
Serial.println(num_gyro_errors);
}
}
}
#if OUTPUT__HAS_RN_BLUETOOTH == true
// Read messages from bluetooth module
// For this to work, the connect/disconnect message prefix of the module has to be set to "#".
else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1")
turn_output_stream_on();
else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0")
turn_output_stream_off();
#endif // OUTPUT__HAS_RN_BLUETOOTH == true
}
else
{
} // Skip character
}
// Time to read the sensors again?
if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
{
timestamp_old = timestamp;
timestamp = millis();
if (timestamp > timestamp_old)
G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
else G_Dt = 0;
// Update sensor readings
read_sensors();
if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS) // We're in calibration mode
{
check_reset_calibration_session(); // Check if this session needs a reset
if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor);
}
else if (output_mode == OUTPUT__MODE_ANGLES) // Output angles
{
// Apply sensor calibration
compensate_sensor_errors();
// Run DCM algorithm
Compass_Heading(); // Calculate magnetic heading
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
if (output_stream_on || output_single_on) output_angles();
}
else // Output sensor values
{
if (output_stream_on || output_single_on) output_sensors();
}
output_single_on = false;
#if DEBUG__PRINT_LOOP_TIME == true
Serial.print("loop time (ms) = ");
Serial.println(millis() - timestamp);
#endif
}
#if DEBUG__PRINT_LOOP_TIME == true
else
{
Serial.println("waiting...");
}
#endif
}
好吧,代码只包含用于 I2C 通信的库,但还有 5 个文件(.ino,它只是一个 .cpp)声明了很少的函数。
通过简单地尝试编译代码,给出了以下错误:
Final_arduino_code.ino: In function ‘void read_sensors()’:
Final_arduino_code:427: error: ‘Read_Gyro’ was not declared in this scope
Final_arduino_code:428: error: ‘Read_Accel’ was not declared in this scope
Final_arduino_code:429: error: ‘Read_Magn’ was not declared in this scope
Final_arduino_code.ino: In function ‘void reset_sensor_fusion()’:
Final_arduino_code:450: error: ‘Vector_Cross_Product’ was not declared in this scope
Final_arduino_code:458: error: ‘Compass_Heading’ was not declared in this scope
Final_arduino_code:462: error: ‘init_rotation_matrix’ was not declared in this scope
Final_arduino_code.ino: In function ‘void compensate_sensor_errors()’:
Final_arduino_code:476: error: ‘Matrix_Vector_Multiply’ was not declared in this scope
Final_arduino_code.ino: In function ‘void setup()’:
Final_arduino_code:541: error: ‘I2C_Init’ was not declared in this scope
Final_arduino_code:542: error: ‘Accel_Init’ was not declared in this scope
Final_arduino_code:543: error: ‘Magn_Init’ was not declared in this scope
Final_arduino_code:544: error: ‘Gyro_Init’ was not declared in this scope
Final_arduino_code.ino: In function ‘void loop()’:
Final_arduino_code:675: error: ‘output_calibration’ was not declared in this scope
Final_arduino_code:683: error: ‘Compass_Heading’ was not declared in this scope
Final_arduino_code:684: error: ‘Matrix_update’ was not declared in this scope
Final_arduino_code:685: error: ‘Normalize’ was not declared in this scope
Final_arduino_code:686: error: ‘Drift_correction’ was not declared in this scope
Final_arduino_code:687: error: ‘Euler_angles’ was not declared in this scope
Final_arduino_code:689: error: ‘output_angles’ was not declared in this scope
Final_arduino_code:693: error: ‘output_sensors’ was not declared in this scope
好吧,这些函数中的大部分已经在这个主要代码的同一文件夹中的其他文件中声明,但是,我已经尝试为每个文件制作一个标题(.h),只是声明函数,它没有用,我试过按原样包含文件,但没有用,尝试将它们更改为 .cpp 并包含,但没有用。
我将问题发布到两个 github 页面,但仍然没有得到答复。
请帮我解决这些错误,在此先感谢。
最佳答案
but there are 5 more files (.ino which is simply an .cpp)
没那么简单,它们不是 .cpp 文件。它们应该使用 Ino
工具包构建,项目主页 is here .从您得到的编译器错误来看,您没有使用这个工具包。
缺少的核心部分是 .h 文件,编译器通常需要这些文件来理解 Read_Gyro() 等函数的外观。目前,您列出的项目没有 .h 文件,也没有相应的 #include 指令。实际上不确定 Ino 是如何工作的,但我猜它就像一个预处理器,在让编译器丢失它之前将 .ino 文件合并到一大堆源代码中。
强烈建议使用该工具包以取得成功并避免重大更改。
关于c++ - Arduino IDE下编译报错(Missing Library),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24948648/
我正在寻找一个编辑器/IDE,它可以为不是专门为它构建的语言提供在编码时很好的功能(例如:能够点击到函数定义)。通过这些,我想到了为非常特定的目的而设计的语言,并且通常只被一个小社区使用。换句话说,那
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
有简单的解释性编程语言,实际上还有控制台 interpreter.exe。 需要按 F5 对语法进行着色、自动完成和执行。 (如果有可能进行“调试”——那就太棒了!) 我从来没有做过这样的事情。 有许
我只是想知道是否有任何可以在我的黑莓上运行的 IDE。我的旧 Palm 有 C 和 BASIC 翻译。 C 板上使用 Palm 的内置文本编辑器,但 BASIC 解释器内置了自己的简单编辑器。 黑莓或
我正在制作一个文件编辑器,并希望为我的用户提供一个不错的 IDE,可以在其中在浏览器上编辑他们的 html/css 文件。是否有任何编辑器与 TinyMCE 类似,但它不是一个所见即所得的编辑器,它更
是否有一个带有集成调试器的D IDE? 最佳答案 Descent可以使用调试器。不完全是您的要求,但是... 关于ide - 是否有一个带有集成调试器的D IDE?,我们在Stack Overflow
每个程序员都知道工具很重要,对于开发人员来说,没有比用于编码的 IDE 更重要的工具了。在过去的几年里,IDE-s 成为标准,在这个领域看到创新并不常见。您可以推荐哪些 IDE 具有创新性,它们引入了
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想改善这个问题吗?更新问题,以便将其作为on-topic
我目前正在学习Ironpython和热爱软件,但我希望从使用notepad ++和cmd.exe继续前进,并尝试使用果汁多一点的东西。 我最近了解到Iron python studio不支持Iron
我主要从事 Java 和 C/C++ 开发,但我开始做更多的 Web 开发(PHP、Rails)和 Eiffel(学习一门新语言总是好的)。 目前,我使用 Eclipse for Java、C/C++
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
是否有 280Atlas (280atlas.com)(免费/商业)的替代品? 其中哪些是成熟的? 最佳答案 您可以使用 nib2cib ,这几乎是相同的想法,但它使用界面构建器(xcode的一部分)
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
IDE 的目标是提高生产力。他们在这方面做得很好。重构、导航、内联文档、自动完成有助于极大地提高生产力。 但是:每个工具都是武器 .相同的 IDE 有助于生成块代码。一些 IDE 功能会导致产生不良代
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题吗? Update the question所以它是on-topic用于堆栈溢出。 关闭 10 年前。 Improve thi
我正在寻找一些功能强大的C / C ++编程环境。实际上,我唯一需要的就是强大的源导航+创建工具。免费或商业都无所谓。我更喜欢一些linux工具,但是它不一定是必需的linux应用。 我需要的是一种具
我刚开始学习 D。有人知 Prop 有自动格式化功能的 D IDE 吗? Eclipse 的 DDT 似乎除了语法高亮之外没有任何其他功能。 最佳答案 我相信,目前 MonoDevelop + Mon
我有兴趣为一个副项目构建一个新风格的 IDE。主要是为了取消类固醇IDE上的普通记事本。我正在为已经尝试过的或者你已经看到(或没有看到)看起来很酷并且在 IDE 中有用的东西寻找一些灵感。我可以解决的
我需要维护一些 VB6 应用程序,并且在涉及枚举名称时遇到了一个奇怪的问题。 VB6 中的 Intellisense 应该工作的方式是,如果我的变量名称被定义为,例如,Dim Abraxis as S
正如标题所说,我看到很多编辑将宏录制作为一项功能吹捧,但自己却找不到利用这些功能的方法。那你能用它做什么呢?您可以记录鼠标移动和/或击键的类型?对外面的人真的那么有帮助吗?具体来说,我处理的 Ecli
我是一名优秀的程序员,十分优秀!