- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
这不是标准的分区问题,因为我需要维护列表中元素的顺序。
例如,如果我有一个列表
[1, 6, 2, 3, 4, 1, 7, 6, 4]
我想要两个 block ,那么分割应该给
[[1, 6, 2, 3, 4, 1], [7, 6, 4]]
每边总和为 17。对于三个 block ,结果将是
[[1, 6, 2, 3], [4, 1, 7], [6, 4]]
对于 12、12 和 10 的总和。
编辑以获取更多解释
我目前将总和除以 block 数并将其用作目标,然后迭代直到接近该目标。问题是某些数据集可能会搞乱算法,例如试图将以下内容分成 3 份:-
[95, 15, 75, 25, 85, 5]
总和为 300,目标为 100。第一个 block 的总和为 95,第二个总和为 90,第三个总和为 110,5 为“剩余”。将它附加到它应该出现的位置会得到 95、90、115,其中更“合理”的解决方案是 110、100、90。
结束编辑
背景:
我有一个包含不同高度的文本(歌词)的列表,我想将文本分成任意数量的列。目前我根据所有行的总高度计算目标高度,但显然这是一个一致的低估,在某些情况下会导致次优解决方案(最后一列明显更高)。
最佳答案
此方法定义分区边界,将数组划分为大致相等数量的元素,然后反复搜索更好的分区,直到找不到更多为止。它不同于大多数其他已发布的解决方案,因为它希望通过尝试多个不同的分区来找到最佳解决方案。其他解决方案试图通过阵列单次传递创建良好的分区,但我想不出保证最优的单次传递算法。
此处的代码是此算法的有效实现,但可能难以理解,因此在末尾包含一个更具可读性的版本作为附录。
def partition_list(a, k):
if k <= 1: return [a]
if k >= len(a): return [[x] for x in a]
partition_between = [(i+1)*len(a)/k for i in range(k-1)]
average_height = float(sum(a))/k
best_score = None
best_partitions = None
count = 0
while True:
starts = [0]+partition_between
ends = partition_between+[len(a)]
partitions = [a[starts[i]:ends[i]] for i in range(k)]
heights = map(sum, partitions)
abs_height_diffs = map(lambda x: abs(average_height - x), heights)
worst_partition_index = abs_height_diffs.index(max(abs_height_diffs))
worst_height_diff = average_height - heights[worst_partition_index]
if best_score is None or abs(worst_height_diff) < best_score:
best_score = abs(worst_height_diff)
best_partitions = partitions
no_improvements_count = 0
else:
no_improvements_count += 1
if worst_height_diff == 0 or no_improvements_count > 5 or count > 100:
return best_partitions
count += 1
move = -1 if worst_height_diff < 0 else 1
bound_to_move = 0 if worst_partition_index == 0\
else k-2 if worst_partition_index == k-1\
else worst_partition_index-1 if (worst_height_diff < 0) ^ (heights[worst_partition_index-1] > heights[worst_partition_index+1])\
else worst_partition_index
direction = -1 if bound_to_move < worst_partition_index else 1
partition_between[bound_to_move] += move * direction
def print_best_partition(a, k):
print 'Partitioning {0} into {1} partitions'.format(a, k)
p = partition_list(a, k)
print 'The best partitioning is {0}\n With heights {1}\n'.format(p, map(sum, p))
a = [1, 6, 2, 3, 4, 1, 7, 6, 4]
print_best_partition(a, 1)
print_best_partition(a, 2)
print_best_partition(a, 3)
print_best_partition(a, 4)
b = [1, 10, 10, 1]
print_best_partition(b, 2)
import random
c = [random.randint(0,20) for x in range(100)]
print_best_partition(c, 10)
d = [95, 15, 75, 25, 85, 5]
print_best_partition(d, 3)
根据您的用途,可能需要进行一些修改。例如,为了确定是否找到了最佳分区,当分区之间没有高度差时,该算法停止,它没有找到比连续 5 次以上迭代看到的最好的东西更好的东西,或者在 100 次之后总迭代次数作为一个包罗万象的停止点。您可能需要调整这些常量或使用不同的方案。如果您的高度形成了一个复杂的值(value)观景观,知道何时停止可能会遇到试图逃避局部最大值等经典问题。
Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 1 partitions
The best partitioning is [[1, 6, 2, 3, 4, 1, 7, 6, 4]]
With heights [34]
Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 2 partitions
The best partitioning is [[1, 6, 2, 3, 4, 1], [7, 6, 4]]
With heights [17, 17]
Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 3 partitions
The best partitioning is [[1, 6, 2, 3], [4, 1, 7], [6, 4]]
With heights [12, 12, 10]
Partitioning [1, 6, 2, 3, 4, 1, 7, 6, 4] into 4 partitions
The best partitioning is [[1, 6], [2, 3, 4], [1, 7], [6, 4]]
With heights [7, 9, 8, 10]
Partitioning [1, 10, 10, 1] into 2 partitions
The best partitioning is [[1, 10], [10, 1]]
With heights [11, 11]
Partitioning [7, 17, 17, 1, 8, 8, 12, 0, 10, 20, 17, 13, 12, 4, 1, 1, 7, 11, 7, 13, 9, 12, 3, 18, 9, 6, 7, 19, 20, 17, 7, 4, 3, 16, 20, 6, 7, 12, 16, 3, 6, 12, 9, 4, 3, 2, 18, 1, 16, 14, 17, 7, 0, 14, 13, 3, 5, 3, 1, 5, 5, 13, 16, 0, 16, 7, 3, 8, 1, 20, 16, 11, 15, 3, 10, 10, 2, 0, 12, 12, 0, 18, 20, 3, 10, 9, 13, 12, 15, 6, 14, 16, 6, 12, 9, 9, 16, 14, 19, 1] into 10 partitions
The best partitioning is [[7, 17, 17, 1, 8, 8, 12, 0, 10, 20], [17, 13, 12, 4, 1, 1, 7, 11, 7, 13, 9], [12, 3, 18, 9, 6, 7, 19, 20], [17, 7, 4, 3, 16, 20, 6, 7, 12], [16, 3, 6, 12, 9, 4, 3, 2, 18, 1, 16], [14, 17, 7, 0, 14, 13, 3, 5, 3, 1, 5, 5], [13, 16, 0, 16, 7, 3, 8, 1, 20, 16], [11, 15, 3, 10, 10, 2, 0, 12, 12, 0, 18], [20, 3, 10, 9, 13, 12, 15, 6, 14], [16, 6, 12, 9, 9, 16, 14, 19, 1]]
With heights [100, 95, 94, 92, 90, 87, 100, 93, 102, 102]
Partitioning [95, 15, 75, 25, 85, 5] into 3 partitions
The best partitioning is [[95, 15], [75, 25], [85, 5]]
With heights [110, 100, 90]
添加了新的测试用例 [95, 15, 75, 25, 85, 5],此方法可以正确处理。
此版本的算法更易于阅读和理解,但由于较少利用内置的 Python 功能,因此有点长。然而,它的执行时间似乎相当,甚至稍快。
#partition list a into k partitions
def partition_list(a, k):
#check degenerate conditions
if k <= 1: return [a]
if k >= len(a): return [[x] for x in a]
#create a list of indexes to partition between, using the index on the
#left of the partition to indicate where to partition
#to start, roughly partition the array into equal groups of len(a)/k (note
#that the last group may be a different size)
partition_between = []
for i in range(k-1):
partition_between.append((i+1)*len(a)/k)
#the ideal size for all partitions is the total height of the list divided
#by the number of paritions
average_height = float(sum(a))/k
best_score = None
best_partitions = None
count = 0
no_improvements_count = 0
#loop over possible partitionings
while True:
#partition the list
partitions = []
index = 0
for div in partition_between:
#create partitions based on partition_between
partitions.append(a[index:div])
index = div
#append the last partition, which runs from the last partition divider
#to the end of the list
partitions.append(a[index:])
#evaluate the partitioning
worst_height_diff = 0
worst_partition_index = -1
for p in partitions:
#compare the partition height to the ideal partition height
height_diff = average_height - sum(p)
#if it's the worst partition we've seen, update the variables that
#track that
if abs(height_diff) > abs(worst_height_diff):
worst_height_diff = height_diff
worst_partition_index = partitions.index(p)
#if the worst partition from this run is still better than anything
#we saw in previous iterations, update our best-ever variables
if best_score is None or abs(worst_height_diff) < best_score:
best_score = abs(worst_height_diff)
best_partitions = partitions
no_improvements_count = 0
else:
no_improvements_count += 1
#decide if we're done: if all our partition heights are ideal, or if
#we haven't seen improvement in >5 iterations, or we've tried 100
#different partitionings
#the criteria to exit are important for getting a good result with
#complex data, and changing them is a good way to experiment with getting
#improved results
if worst_height_diff == 0 or no_improvements_count > 5 or count > 100:
return best_partitions
count += 1
#adjust the partitioning of the worst partition to move it closer to the
#ideal size. the overall goal is to take the worst partition and adjust
#its size to try and make its height closer to the ideal. generally, if
#the worst partition is too big, we want to shrink the worst partition
#by moving one of its ends into the smaller of the two neighboring
#partitions. if the worst partition is too small, we want to grow the
#partition by expanding the partition towards the larger of the two
#neighboring partitions
if worst_partition_index == 0: #the worst partition is the first one
if worst_height_diff < 0: partition_between[0] -= 1 #partition too big, so make it smaller
else: partition_between[0] += 1 #partition too small, so make it bigger
elif worst_partition_index == len(partitions)-1: #the worst partition is the last one
if worst_height_diff < 0: partition_between[-1] += 1 #partition too small, so make it bigger
else: partition_between[-1] -= 1 #partition too big, so make it smaller
else: #the worst partition is in the middle somewhere
left_bound = worst_partition_index - 1 #the divider before the partition
right_bound = worst_partition_index #the divider after the partition
if worst_height_diff < 0: #partition too big, so make it smaller
if sum(partitions[worst_partition_index-1]) > sum(partitions[worst_partition_index+1]): #the partition on the left is bigger than the one on the right, so make the one on the right bigger
partition_between[right_bound] -= 1
else: #the partition on the left is smaller than the one on the right, so make the one on the left bigger
partition_between[left_bound] += 1
else: #partition too small, make it bigger
if sum(partitions[worst_partition_index-1]) > sum(partitions[worst_partition_index+1]): #the partition on the left is bigger than the one on the right, so make the one on the left smaller
partition_between[left_bound] -= 1
else: #the partition on the left is smaller than the one on the right, so make the one on the right smaller
partition_between[right_bound] += 1
def print_best_partition(a, k):
#simple function to partition a list and print info
print ' Partitioning {0} into {1} partitions'.format(a, k)
p = partition_list(a, k)
print ' The best partitioning is {0}\n With heights {1}\n'.format(p, map(sum, p))
#tests
a = [1, 6, 2, 3, 4, 1, 7, 6, 4]
print_best_partition(a, 1)
print_best_partition(a, 2)
print_best_partition(a, 3)
print_best_partition(a, 4)
print_best_partition(a, 5)
b = [1, 10, 10, 1]
print_best_partition(b, 2)
import random
c = [random.randint(0,20) for x in range(100)]
print_best_partition(c, 10)
d = [95, 15, 75, 25, 85, 5]
print_best_partition(d, 3)
关于python - 将数字列表拆分为 n 个 block ,使这些 block 具有(接近)相等的总和并保持原始顺序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56086075/
也许我在 Java 上工作的时间太长而没有真正理解它的一些基础知识。 我确实理解 == 用于对象引用相等,而 .equals() 用于对象值相等。 比较整数: Integer x = 1, y = 1
我是从一道考试题中得出这个答案的,但无法理解该解决方案的工作原理。如果值“x”和“y”相等,则此函数应该返回“true”,否则返回 False。 解决方法: function equal_boolea
我将带有表情符号的文本存储在 mysql 数据库中。 数据库、表和列设置为使用utf8mb4和utf8mb4_unicode_ci。 我可以毫无问题地输入单元格值(数据类型是 VARCHAR)。 但是
如果两个 DateTime 对象具有相同的日、月和年,我该如何比较?问题是他们有不同的小时/分钟/秒。 最佳答案 对于 DateTime 对象,没有好的方法可以做到这一点。所以你必须做,比方说,不是那
我一直想知道这个问题,所以我想我会问的。 您将看到的大多数地方都使用相同的语义逻辑来覆盖 Equals 和 GetHashCode 以实现成员平等...但是它们通常使用不同的实现: publi
苹果 CoreGraphics.framework , CGGeometry.h : CG_INLINE bool __CGSizeEqualToSize(CGSize size1, CGSize s
在最新的python 版本中, dict 保留了插入的顺序。在平等方面是否有任何变化。例如,目前以下工作。既然广告顺序很重要, future 会不会发生这种变化? 我问是因为有根本性的变化 - 以前
class VideoUserModel(models.Model): user = models.ManyToManyField(get_user_model()) viewlist
我在 COQ 中有一个有限枚举类型(比如 T),我想检查元素是否相等。这意味着,我需要一个函数 bool beq_T(x:T,y:T) 我设法定义这样一个函数的唯一方法是逐个分析。这会导致很多匹配语
我在 Windows 7(32 位)下的 MinGW 中使用 gfortran 来编译 Fortran 代码。这是文件 testequal.f 中包含的最少代码: program test
我有以下 jsp 片段: ${campaign.moderated}
我想检查两个稀疏数组是否(几乎)相等。而对于 numpy 数组,你可以这样做: import numpy as np a = np.ones(200) np.testing.assert_array_
我有以下类(class): public class MyDocuments { public DateTime registeredDate; public
这个问题已经有答案了: Is floating point math broken? (33 个回答) 已关闭 5 年前。 我在这里想做的是,我采用一个精度值(小于 1)并打印 1/n 类型的所有数字
我正在为我的arduino写一个草图,我想检查我的字符串的最后一个字符。 例如: 如果输入是 cats- 我想看看最后一个字符(在我的例子中是“-”)实际上是否 - 我使用的代码: 串行事件函数 vo
让我们开始: using System; public class Program { class A { public virtual void Do() { }
我只需要根据几个键(不是全部)来确定两个 HashMap 的相等性 除了单独访问每个字段并比较相等性之外,还有其他节省时间的方法吗? 最佳答案 我能想到的一种方法是在您的 HashMap 上存储某种“
在Java中,大写的Double可以为null。 但是如果我有 double a 和 b 并且我这样做: if (a.equals(b)) 如果其中之一为空,它会崩溃。有没有更好的方法来比较它们? 最
我正在尝试从我的旧数据库中插入表格数据。 Id 在数据库表和选择特定列中都相等。这是我的数据库。 旧数据库:sch -> 旧表:product (id, tag, url) (13, red, aaa
我正在开发一个应用程序,它在我的主视图中有一个侧边栏和两个 div。我试图在容器内平均分割两者的高度。我试过 height = 50% 但效果不太好。
我是一名优秀的程序员,十分优秀!