- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在使用如下所示的邻接矩阵:
N <- 5
A <- matrix(round(runif(N^2),1),N)
diag(A) <- 0
1> A
[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0.1 0.2 0.6 0.9
[2,] 0.8 0.0 0.4 0.7 0.5
[3,] 0.6 0.8 0.0 0.8 0.6
[4,] 0.8 0.1 0.1 0.0 0.3
[5,] 0.2 0.9 0.7 0.9 0.0
概率和定向。
这是一种缓慢的方法来计算 i
通过至少一个其他节点链接到 j
的概率:
library(foreach)
`%ni%` <- Negate(`%in%`) #opposite of `in`
union.pr <- function(x){#Function to calculate the union of many probabilities
if (length(x) == 1){return(x)}
pr <- sum(x[1:2]) - prod(x[1:2])
i <- 3
while(i <= length(x)){
pr <- sum(pr,x[i]) - prod(pr,x[i])
i <- 1+i
}
pr
}
second_order_adjacency <- function(A, i, j){#function to calculate probability that i is linked to j through some other node
pr <- foreach(k = (1:nrow(A))[1:nrow(A) %ni% c(i,j)], .combine = c) %do% {
A[i,k]*A[k,j]
}
union.pr(pr)
}
#loop through the indices...
A2 <- A * NA
for (i in 1:N){
for (j in 1:N){
if (i!=j){
A2[i,j] <- second_order_adjacency(A, i, j)
}
}}
diag(A2) <- 0
1> A2
[,1] [,2] [,3] [,4] [,5]
[1,] 0.000000 0.849976 0.666112 0.851572 0.314480
[2,] 0.699040 0.000000 0.492220 0.805520 0.831888
[3,] 0.885952 0.602192 0.000000 0.870464 0.790240
[4,] 0.187088 0.382128 0.362944 0.000000 0.749960
[5,] 0.954528 0.607608 0.440896 0.856736 0.000000
此算法可扩展为 N^2,并且我有数千个节点。而且我的矩阵并不是那么稀疏——很多小数字和一些大数字。我可以将它并行化,但我只会除以核心数。是否有一些矢量化技巧可以让我利用矢量化操作的相对速度?
tl;dr:如何快速计算概率有向图中的二阶邻接矩阵?
最佳答案
你的 union.pr 函数比简单高效的方法慢 500 倍。因此,将 union.pr 替换为 1-prod(1-pr),您将获得 500 倍的速度。
x <- runif(1000)*0.01
t1 <- proc.time()
for (i in 1:10000){
y <- union.pr(x)
}
t1 <- proc.time()-t1
print(t1)
# user system elapsed
# 21.09 0.02 21.18
t2 <- proc.time()
for (i in 1:10000){
y <- 1-prod(1-x)
}
t2 <- proc.time() - t2
print(t2)
# user system elapsed
# 0.04 0.00 0.03
关于r - 从概率有向图的一阶邻接矩阵计算二阶邻接矩阵的快速算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42033675/
接下来是我的代码: with open("test.txt") as f_in: for line in f_in: for char in line:
我们有一个六面骰子,面编号为 1 到 6。随着 n 的增加,在第 n 卷中第一次看到 1 的概率降低。我想找到最小的卷数,使得这个概率小于某个给定的限制。 def probTest(limit):
我只是想知道为什么运行下面的代码时出现错误。我正在尝试使用 numpy 为基于文本的游戏计算概率。下面的代码不是游戏本身的代码。这仅用于测试目的和学习。感谢您提前的答复,请对我宽容一点。 from n
我目前正在创建一个与多个arduino板通信的服务器软件。由于硬件原因,我使用UDP协议(protocol)。我有一个非常简单的机制,在大多数情况下,当包裹丢失时,它会重新发送包裹。我现在有两个问题:
我想在 LinearLayout 上添加一个 fling Action 。为此,我使用了以下代码。 public class NewsActivity extends Activity { .
下面是其中一个 facebook 谜题:我无法理解如何进行此操作。 你有 C 个容器、B 个黑球和无限数量的白球。您希望以一种方式在容器之间分配球,即每个容器至少包含一个球,并且选择白球的概率大于或等
我有一个希伯来语文本,就像 "×گض¸×¨ض´×™×،ض°×کוض¹×ں",我想将它转换为可读的 unicode 希伯来语字符。 我试过这段代码: const string Str = "×گض¸×
我正在尝试使用 Random.nextDouble() 获取 1.0 和 10.0 之间的随机双数: double number = 1.0 + (10.0-1.0) * Random.nextDou
我目前已经为二进制类实现了概率(至少我这么认为)。现在我想扩展这种回归方法,并尝试将其用于波士顿数据集。不幸的是,我的算法似乎被卡住了,我当前运行的代码如下所示: from sklearn impor
我在 2D 空间中有一小组数据点(大约 10 个),每个数据点都有一个类别标签。我希望根据现有数据点标签对新数据点进行分类,并关联属于任何特定标签类别的“概率”。 基于最近邻的标签来标记新点是否合适(
我正在做我的第一个 tensorflow 项目。 我需要获得给定输入和预期序列的 ctc 概率(不是 ctc 损失)。 在 python 或 c++ 中是否有任何 api 或方法可以做到这一点? 我更
我正在尝试通过 assignment 1斯坦福 cs244n 类(class)。问题 1b 强烈建议对 Softmax 函数进行优化。我设法得到了N维向量的Softmax。我还得到了 MxN 维矩阵的
我有一个预测算法的想法,该算法可以根据所选项目先前出现的顺序准确预测随机值,并分析模式以提高准确性。 基本上是一种接受两个参数的算法,一个是一组可能的选择;另一个是这些数字的历史,分析该模式并预测序列
自 HOURS 以来,我一直在努力思考这个 TopCoder 问题,但无法找到一个完美的解决方案,并找到了下面给出的一个使用得非常漂亮的解决方案! 我想弄清楚这个解决方案如何适用于给定的问题?而我当初
我只知道如何生成随机 boolean 值(真/假)。默认概率为 50:50 但是我怎样才能用我自己的概率生成真假值呢?假设它以 40:60 或 20:80 等的概率返回 true... 最佳答案 一种
对于以下示例,我如何计算 julia 中的百分位数/概率值/尾部区域 Example : N(1100, 200) #Normally distributed with mean 1100 & st
我正在尝试修改标准 kNN 算法来获取属于某个类别的概率,而不仅仅是通常的分类。我还没有找到太多关于概率 kNN 的信息,但据我了解,它的工作原理与 kNN 类似,不同之处在于它计算给定半径内每个类的
我正在使用 PostgreSQL 为我所有数据中的变量对计算经验概率密度函数。我试图确定在计算 PDF 之前索引是否/何时更有效。我像这样运行 EXPLAIN CREATE INDEX, EXPLAI
有谁知道当查询有偏移时如何在 MySql 中请求“实时结果集”(例如:select * from table limit 10 offset 20;)。它正在经历类似 的错误 'invalid use
unsigned long long int first( int b , int c){ int h=b; //int k; for(int k=b-1;k>c;k--){ b=b*k;
我是一名优秀的程序员,十分优秀!